论文标题
直接观察“铁电”极性金属中的对称性破坏
Direct observation of symmetry-breaking in a 'ferroelectric' polar metal
论文作者
论文摘要
铁电材料包含可切换的自发极化,即使在没有外部电场的情况下也存在。材料中铁电性和金属性的共存似乎是虚幻的,因为极化是在金属中定义不明的,在金属中,巡回电子被期望筛选偶极订购所需的远距离偶极相互作用。极地金属的惊人发现,Lioso3引起了人们的兴趣,他们兴趣寻找由异国量子现象的前景所激发的新的极性金属,例如非常规的配对机制,从而引起了超导性,拓扑旋转电流,各向异性上的关键上级关键领域,以及Mott Multiferroics。先前的研究表明,李原子的配位偏好在稳定lioso3的极性金属相中起着关键作用,但是对极性和金属性如何共存仍然难以捉摸。在这里,我们使用XUV-SHG作为新技术来直接探测Li Atom周围的倒置对称性。我们的结果与以前的理论一致,即在lioso3中导致极性金属相的主要结构失真是沿极轴的li li原子位移的结果。我们的实验结果与从头算计算之间的显着一致性提供了将非线性响应与单位细胞空间不对称连接连接的物理见解。结果表明,XUV-SHG可以在具有元素特异性的散装材料中选择性探测倒置对称性。与光学SHG方法相比,XUV-SHG填补了研究结构失真与费米表面的能量分离时研究结构不对称的关键空白。此外,这些结果为具有元素特异性的飞秒时间尺度上的对称性破坏对称性结构相变的时间铺平了道路。
Ferroelectric materials contain a switchable spontaneous polarization that persists even in the absence of an external electric field. The coexistence of ferroelectricity and metallicity in a material appears to be illusive, since polarization is ill-defined in metals, where the itinerant electrons are expected to screen the long-range dipole interactions necessary for dipole ordering. The surprising discovery of the polar metal, LiOsO3 has generated interest in searching for new polar metals motivated by the prospects of exotic quantum phenomena such as unconventional pairing mechanisms giving rise to superconductivity, topological spin currents, anisotropic upper critical fields, and Mott multiferroics. Previous studies have suggested that the coordination preferences of the Li atom play a key role in stabilizing the polar metal phase of LiOsO3, but a thorough understanding of how polar order and metallicity can coexist remains elusive. Here, we use XUV-SHG as novel technique to directly probe the broken inversion-symmetry around the Li atom. Our results agree with previous theories that the primary structural distortion that gives rise to the polar metal phase in LiOsO3 is a consequence of a sub-Angstrom Li atom displacement along the polar axis. A remarkable agreement between our experimental results and ab initio calculations provide physical insights for connecting the nonlinear response to unit-cell spatial asymmetries. It is shown that XUV-SHG can selectively probe inversion-breaking symmetry in a bulk material with elemental specificity. Compared to optical SHG methods, XUV-SHG fills a key gap for studying structural asymmetries when the structural distortion is energetically separated from the Fermi surface. Further, these results pave the way for time-resolved probing of symmetry-breaking structural phase transitions on femtosecond timescales with element specificity.