论文标题

在过渡金属二北元异源异质结构中的双层晶体晶体的签名

Signatures of bilayer Wigner crystals in a transition metal dichalcogenide heterostructure

论文作者

Zhou, You, Sung, Jiho, Brutschea, Elise, Esterlis, Ilya, Wang, Yao, Scuri, Giovanni, Gelly, Ryan J., Heo, Hoseok, Taniguchi, Takashi, Watanabe, Kenji, Zaránd, Gergely, Lukin, Mikhail D., Kim, Philip, Demler, Eugene, Park, Hongkun

论文摘要

Wigner晶体是由强相关效应引起的常规电子晶格,是最早的预测集体电子状态之一。这种多体状态表现出量子和经典的相变,并已被提出作为量子信息处理应用的基础。在半导体平台中,在磁场或基于Moiré的晶格电位下观察到了二维Wigner晶体,而电子动能受到了强烈抑制。在这里,我们报告了在原子薄的摩西$ _2 $双层中,由六角形硝化硼隔开的双层晶体晶体形成没有磁性或限制场。我们观察到在对称(1:1)和不对称(4:1和7:1)在低温温度下两种摩西$ _2 $层的电子掺杂的鲁棒相关绝缘状态的光学特征。我们将这些特征归因于双层晶体晶体,这些晶体由每个层中的两个相称的三角电子晶格形成,通过层间相互作用稳定。这些双层晶体晶体阶段非常稳定,并且在关键电子密度高达$ 6 \ $ 6 \ times10^{12} $ cm $^{ - 2} $上方的量子和热融化过渡上,并且在〜40 k的温度下,我们的结果表明,我们的结果表明,具有原子上的较薄的途径,可实现的新平台,并实现了较小的新平台,并实现了新型的新平台,并提供了相关的新平台,该平台可实现相关的新平台。并开发了量子电子和光电学中的新型应用。

A Wigner crystal, a regular electron lattice arising from strong correlation effects, is one of the earliest predicted collective electronic states. This many-body state exhibits quantum and classical phase transitions and has been proposed as a basis for quantum information processing applications. In semiconductor platforms, two-dimensional Wigner crystals have been observed under magnetic field or moiré-based lattice potential where the electron kinetic energy is strongly suppressed. Here, we report bilayer Wigner crystal formation without a magnetic or confinement field in atomically thin MoSe$_2$ bilayers separated by hexagonal boron nitride. We observe optical signatures of robust correlated insulating states formed at symmetric (1:1) and asymmetric (4:1 and 7:1) electron doping of the two MoSe$_2$ layers at cryogenic temperatures. We attribute these features to the bilayer Wigner crystals formed from two commensurate triangular electron lattices in each layer, stabilized via inter-layer interaction. These bilayer Wigner crystal phases are remarkably stable and undergo quantum and thermal melting transitions above a critical electron density of up to $6 \times10^{12}$ cm$^{-2}$ and at temperatures of ~40 K. Our results demonstrate that atomically thin semiconductors provide a promising new platform for realizing strongly correlated electronic states, probing their electronic and magnetic phase transitions, and developing novel applications in quantum electronics and optoelectronics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源