论文标题
在过渡金属二北元异源异质结构中的双层晶体晶体的签名
Signatures of bilayer Wigner crystals in a transition metal dichalcogenide heterostructure
论文作者
论文摘要
Wigner晶体是由强相关效应引起的常规电子晶格,是最早的预测集体电子状态之一。这种多体状态表现出量子和经典的相变,并已被提出作为量子信息处理应用的基础。在半导体平台中,在磁场或基于Moiré的晶格电位下观察到了二维Wigner晶体,而电子动能受到了强烈抑制。在这里,我们报告了在原子薄的摩西$ _2 $双层中,由六角形硝化硼隔开的双层晶体晶体形成没有磁性或限制场。我们观察到在对称(1:1)和不对称(4:1和7:1)在低温温度下两种摩西$ _2 $层的电子掺杂的鲁棒相关绝缘状态的光学特征。我们将这些特征归因于双层晶体晶体,这些晶体由每个层中的两个相称的三角电子晶格形成,通过层间相互作用稳定。这些双层晶体晶体阶段非常稳定,并且在关键电子密度高达$ 6 \ $ 6 \ times10^{12} $ cm $^{ - 2} $上方的量子和热融化过渡上,并且在〜40 k的温度下,我们的结果表明,我们的结果表明,具有原子上的较薄的途径,可实现的新平台,并实现了较小的新平台,并实现了新型的新平台,并提供了相关的新平台,该平台可实现相关的新平台。并开发了量子电子和光电学中的新型应用。
A Wigner crystal, a regular electron lattice arising from strong correlation effects, is one of the earliest predicted collective electronic states. This many-body state exhibits quantum and classical phase transitions and has been proposed as a basis for quantum information processing applications. In semiconductor platforms, two-dimensional Wigner crystals have been observed under magnetic field or moiré-based lattice potential where the electron kinetic energy is strongly suppressed. Here, we report bilayer Wigner crystal formation without a magnetic or confinement field in atomically thin MoSe$_2$ bilayers separated by hexagonal boron nitride. We observe optical signatures of robust correlated insulating states formed at symmetric (1:1) and asymmetric (4:1 and 7:1) electron doping of the two MoSe$_2$ layers at cryogenic temperatures. We attribute these features to the bilayer Wigner crystals formed from two commensurate triangular electron lattices in each layer, stabilized via inter-layer interaction. These bilayer Wigner crystal phases are remarkably stable and undergo quantum and thermal melting transitions above a critical electron density of up to $6 \times10^{12}$ cm$^{-2}$ and at temperatures of ~40 K. Our results demonstrate that atomically thin semiconductors provide a promising new platform for realizing strongly correlated electronic states, probing their electronic and magnetic phase transitions, and developing novel applications in quantum electronics and optoelectronics.