论文标题

在森林中以urquhart tessellations认可

Place Recognition in Forests with Urquhart Tessellations

论文作者

Nardari, Guilherme V., Cohen, Avraham, Chen, Steven W., Liu, Xu, Arcot, Vaibhav, Romero, Roseli A. F., Kumar, Vijay

论文摘要

在这封信中,我们根据森林中树木的位置得出的基于urquhart镶嵌的新颖描述符。我们提出了一个使用这些描述符来检测先前看到的观察值和地标的对应关系的框架,即使有部分重叠和噪声。我们在仿真和现实世界中的数据图中运行循环封闭检测实验,从松树林中的无人机(无人驾驶汽车)飞行中进行了合并,并表明我们的方法在准确性和鲁棒性方面都优于最先进的方法。

In this letter, we present a novel descriptor based on Urquhart tessellations derived from the position of trees in a forest. We propose a framework that uses these descriptors to detect previously seen observations and landmark correspondences, even with partial overlap and noise. We run loop closure detection experiments in simulation and real-world data map-merging from different flights of an Unmanned Aerial Vehicle (UAV) in a pine tree forest and show that our method outperforms state-of-the-art approaches in accuracy and robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源