论文标题
关于diwan和Mubayi的有色Turán问题
On a colored Turán problem of Diwan and Mubayi
论文作者
论文摘要
假设$ r $(红色)和$ b $(蓝色)是两个尺寸$ n $的顶点集上的两个图,而$ h $是带有红色边缘的红色颜色的图形。如果$ r \ cup b $不包含$ h $的副本,则$ r $和$ b $可以大?调用最大的整数$ \ mathrm {mex}(n,h)$。 Diwan和Mubayi引入了这个问题,他们推测(除了一些具体例外)时,当$ h $是$ k+1 $ 1 $ Vertices上的完整图时,其边缘$ \ mathrm {mathrm {mex}(mex}(n,n,h)= \ mathrm {ex}(ex}(ex}(n,k_ k_ k_ k_ {k+1}))$。这个猜想概括了Turán的定理。 Diwan和Mubayi还要求在这种情况下进行Erdős-Stone-Simonovits定理的类似物。我们证明了以下渐近阈值的渐近表征,以色数$χ(h)$和\ textIt {降低的最大匹配数} $ \ MATHCAL {M}(M}(h)$ of $ h $。 $ \ MATHRM {MEX}(N,H)= \ left(1- \ frac {1} {2(χ(H)-1)} - ω\ left(\ frac {\ mathcal {M} {M} $ \ MATHCAL {M}(H)$是一组合适的$χ(H)$ - $ H $的颜色,这是最大的一组颜色类别的颜色对,其中每对仅由单个颜色的边缘连接。结果也被证明超过2美元的颜色,并且紧密地符合隐含的恒定因素。 当$ h $是带有红色边缘颜色的循环时,我们还研究$ \ mathrm {mex}(n,h)$,我们表明$ \ mathrm {mex}(mex}(n,n,h)\ Lessim \ lyseSim \ frac {1} {1} {2} {2} {2} \ binom {n} n} {n} {2} $,即
Suppose that $R$ (red) and $B$ (blue) are two graphs on the same vertex set of size $n$, and $H$ is some graph with a red-blue coloring of its edges. How large can $R$ and $B$ be if $R\cup B$ does not contain a copy of $H$? Call the largest such integer $\mathrm{mex}(n, H)$. This problem was introduced by Diwan and Mubayi, who conjectured that (except for a few specific exceptions) when $H$ is a complete graph on $k+1$ vertices with any coloring of its edges $\mathrm{mex}(n,H)=\mathrm{ex}(n, K_{k+1})$. This conjecture generalizes Turán's theorem. Diwan and Mubayi also asked for an analogue of Erdős-Stone-Simonovits theorem in this context. We prove the following asymptotic characterization of the extremal threshold in terms of the chromatic number $χ(H)$ and the \textit{reduced maximum matching number} $\mathcal{M}(H)$ of $H$. $$\mathrm{mex}(n, H)=\left(1- \frac{1}{2(χ(H)-1)} - Ω\left(\frac{\mathcal{M}(H)}{χ(H)^2}\right)\right)\frac{n^2}{2}.$$ $\mathcal{M}(H)$ is, among the set of proper $χ(H)$-colorings of $H$, the largest set of disjoint pairs of color classes where each pair is connected by edges of just a single color. The result is also proved for more than $2$ colors and is tight up to the implied constant factor. We also study $\mathrm{mex}(n, H)$ when $H$ is a cycle with a red-blue coloring of its edges, and we show that $\mathrm{mex}(n, H)\lesssim \frac{1}{2}\binom{n}{2}$, which is tight.