论文标题
方向图网络
Directional Graph Networks
论文作者
论文摘要
图形神经网络(GNN)中缺乏各向异性内核极大地限制了它们的表现力,导致了诸如过度光滑的众所周知的问题。为了克服这一局限性,我们提出了第一个全球一致的各向异性内核,用于GNNS,允许根据拓扑衍生的方向流进行定义的图形卷积。首先,通过定义图表中的矢量字段,我们开发了一种应用方向导数并通过将节点特异性消息投影到字段中的方法。然后,我们提出使用拉普拉斯特征向量作为这种向量场。我们表明,该方法在$ n $维网格上概括了CNN,并且在Weisfeiler-Lehman 1-WL测试方面比标准GNN更具歧视性。我们在不同的标准基准上评估了我们的方法,并在CIFAR10图数据集的相对误差降低8%,分子锌数据集的相对误差降低为11%至32%,而MOLPCBA数据集的相对精度相对增加了1.6%。这项工作的一个重要结果是,它使图形网络能够以无监督的方式嵌入方向,从而可以更好地表示不同物理或生物学问题中各向异性特征。
The lack of anisotropic kernels in graph neural networks (GNNs) strongly limits their expressiveness, contributing to well-known issues such as over-smoothing. To overcome this limitation, we propose the first globally consistent anisotropic kernels for GNNs, allowing for graph convolutions that are defined according to topologicaly-derived directional flows. First, by defining a vector field in the graph, we develop a method of applying directional derivatives and smoothing by projecting node-specific messages into the field. Then, we propose the use of the Laplacian eigenvectors as such vector field. We show that the method generalizes CNNs on an $n$-dimensional grid and is provably more discriminative than standard GNNs regarding the Weisfeiler-Lehman 1-WL test. We evaluate our method on different standard benchmarks and see a relative error reduction of 8% on the CIFAR10 graph dataset and 11% to 32% on the molecular ZINC dataset, and a relative increase in precision of 1.6% on the MolPCBA dataset. An important outcome of this work is that it enables graph networks to embed directions in an unsupervised way, thus allowing a better representation of the anisotropic features in different physical or biological problems.