论文标题
使用交替投影绘制稀疏3D数据
Mapping of Sparse 3D Data using Alternating Projection
论文作者
论文摘要
我们提出了一种新颖的技术,可以在没有纹理的情况下注册稀疏的3D扫描。尽管KinectFusion或迭代最接近点(ICP)等现有方法在很大程度上依赖着密集的点云,但在没有RGB数据的情况下,此任务在稀疏条件下尤其具有挑战性。稀疏纹理的数据不带有高质量的边界信号,这禁止使用拐角,连接或边界线的对应关系。此外,在稀疏数据的情况下,假设将在两次连续扫描中捕获相同点是不正确的。我们采用不同的方法,并首先使用大量的线段重新参数化点云。在此重新参数化数据中,存在大量的线路交叉点(而不是通信)约束,使我们能够解决注册任务。我们建议通过将注册作为同时满足相交和刚度约束的同时满足,以使用两步交替的投影算法。所提出的方法的表现优于Kinect和LiDar数据集上的其他最高得分算法。在Kinect中,我们可以使用100倍下采样的稀疏数据,并且仍然优于在全分辨率数据上运行的竞争方法。
We propose a novel technique to register sparse 3D scans in the absence of texture. While existing methods such as KinectFusion or Iterative Closest Points (ICP) heavily rely on dense point clouds, this task is particularly challenging under sparse conditions without RGB data. Sparse texture-less data does not come with high-quality boundary signal, and this prohibits the use of correspondences from corners, junctions, or boundary lines. Moreover, in the case of sparse data, it is incorrect to assume that the same point will be captured in two consecutive scans. We take a different approach and first re-parameterize the point-cloud using a large number of line segments. In this re-parameterized data, there exists a large number of line intersection (and not correspondence) constraints that allow us to solve the registration task. We propose the use of a two-step alternating projection algorithm by formulating the registration as the simultaneous satisfaction of intersection and rigidity constraints. The proposed approach outperforms other top-scoring algorithms on both Kinect and LiDAR datasets. In Kinect, we can use 100X downsampled sparse data and still outperform competing methods operating on full-resolution data.