论文标题
停滞的星星何时旋转旋转?使用Ruprecht 147进行陀螺教学
When Do Stalled Stars Resume Spinning Down? Advancing Gyrochronology with Ruprecht 147
论文作者
论文摘要
Recent measurements of rotation periods ($P_\text{rot}$) in the benchmark open clusters Praesepe (670 Myr), NGC 6811 (1 Gyr), and NGC 752 (1.4 Gyr) demonstrate that, after converging onto a tight sequence of slowly rotating stars in mass$-$period space, stars temporarily stop spinning down.这些数据还表明,这个失速的旋转时代的持续时间增加了较低的质量。为了确定何时插入星星恢复旋转,我们使用$ k2 $ Mission和Palomar Transient工厂的数据来测量$ P_ \ text {rot} $,用于58个dwarf的2.7-gyr gyr grop ruprecht 147,其中39个,其中39个满足我们的标准,旨在删除短期或附近的equ-equod或附近的biss biss binaries。结合$ kepler $ $ $ $ p_ \ text {rot} $数据的大约coeval群集NGC 6819(30星,带有$ M_ \ star> 0.85 $ m $ _ \ odot $),我们的新测量值是我们的新测量值,多于$ \ $ \ $ 2.5 Gyr Benchmark Rotators $ \ $ \ $ \ $ 0.5555555555555555。与年轻簇的序列相比,该关节样品的缓慢旋转序列看起来相对平坦(22 $ \ pm 2天)。该序列还与$开普勒$中间周期间隙相交,这表明该差距不是由恒星形成中的平静产生的。我们计算出恒星恢复旋转的时间,并发现0.55 m $ _ \ odot $ stars至少停滞了至少1.3 Gyr。为了准确地年龄在现场时代的低质量恒星,必须修改陀螺仪公式以说明这一停滞时间尺度。从经验上调整带有开放群集数据的核心$ - $信封耦合模型可以说明大多数明显的停滞效果。但是,替代解释,例如,磁制动扭矩的暂时减少,尚未排除。
Recent measurements of rotation periods ($P_\text{rot}$) in the benchmark open clusters Praesepe (670 Myr), NGC 6811 (1 Gyr), and NGC 752 (1.4 Gyr) demonstrate that, after converging onto a tight sequence of slowly rotating stars in mass$-$period space, stars temporarily stop spinning down. These data also show that the duration of this epoch of stalled spin-down increases toward lower masses. To determine when stalled stars resume spinning down, we use data from the $K2$ mission and the Palomar Transient Factory to measure $P_\text{rot}$ for 58 dwarf members of the 2.7-Gyr-old cluster Ruprecht 147, 39 of which satisfy our criteria designed to remove short-period or near-equal-mass binaries. Combined with the $Kepler$ $P_\text{rot}$ data for the approximately coeval cluster NGC 6819 (30 stars with $M_\star > 0.85$ M$_\odot$), our new measurements more than double the number of $\approx$2.5 Gyr benchmark rotators and extend this sample down to $\approx$0.55 M$_\odot$. The slowly rotating sequence for this joint sample appears relatively flat (22 $\pm$ 2 days) compared to sequences for younger clusters. This sequence also intersects the $Kepler$ intermediate period gap, demonstrating that this gap was not created by a lull in star formation. We calculate the time at which stars resume spinning down, and find that 0.55 M$_\odot$ stars remain stalled for at least 1.3 Gyr. To accurately age-date low-mass stars in the field, gyrochronology formulae must be modified to account for this stalling timescale. Empirically tuning a core$-$envelope coupling model with open cluster data can account for most of the apparent stalling effect. However, alternative explanations, e.g., a temporary reduction in the magnetic braking torque, cannot yet be ruled out.