论文标题
关于手性代数和$ω$的评论
Comments on chiral algebras and $Ω$-deformations
论文作者
论文摘要
每六维$ \ MATHCAL {N} =(2,0)$ scft上的$ \ Mathbf {r}^6 $包含一组受保护的操作员,其相关函数由二维手性手性代数控制。我们通过执行$ \ MATHCAL {N} =(2,0)$ TOWHORA的拓扑形态形态扭曲的$ω$变形来提供此手性代数的替代结构。此外,我们表明,手性代数的中心电荷可以通过对六维理论的异常多项式进行地位整合来获得。此外,我们将这种结构推广到包括$ \ Mathbf {r}^4 $横向到手性代数平面的Orbifolds。
Every six-dimensional $\mathcal{N}=(2,0)$ SCFT on $\mathbf{R}^6$ contains a set of protected operators whose correlation functions are controlled by a two-dimensional chiral algebra. We provide an alternative construction of this chiral algebra by performing an $Ω$-deformation~of a topological-holomorphic twist of the $\mathcal{N}=(2,0)$ theory on $\mathbf{R}^6$ and restricting to the cohomology of a specific supercharge. In addition, we show that the central charge of the chiral algebra can be obtained by performing equivariant integration of the anomaly polynomial of the six-dimensional theory. Furthermore, we generalize this construction to include orbifolds of the $\mathbf{R}^4$ transverse to the chiral algebra plane.