论文标题
$ q $ - sinc总和和积分
$q$-analogs of sinc sums and integrals
论文作者
论文摘要
$ q $ - analogs等于积分关系$ \ sum_ {n \ in \ mathbb {z}}} f(n)= \ int _ { - \ infty}^\ infty}^\ infty f(x)dx $用于SINC函数和二元系数。在$ q $ - hypheremetric系列的背景下,这种类似物已经知道。本文介绍了不是$ q $ - hypheremetric函数的多质量“分数”概括。
$q$-analogs of sum equals integral relations $\sum_{n\in\mathbb{Z}}f(n)=\int_{-\infty}^\infty f(x)dx$ for sinc functions and binomial coefficients are studied. Such analogs are already known in the context of $q$-hypergeometric series. This paper deals with multibasic `fractional' generalizations that are not $q$-hypergeometric functions.