论文标题
监督机器学习中严格且强大的量子加速
A rigorous and robust quantum speed-up in supervised machine learning
论文作者
论文摘要
在过去的几年中,提出了几种量子机学习算法,该算法有望在其经典对应物上加速量子。这些学习算法中的大多数要么假设量子访问数据 - 尚不清楚量子加速是否仍然存在而没有做出这些强大的假设,或者本质上是启发式化的,而不是与经典算法相比,没有可证明的优势。在本文中,我们使用仅需要经典访问数据的通用量子学习算法建立了严格的量子加速,以进行监督分类。我们的量子分类器是一种常规的支持向量机,它使用容忍故障的量子计算机来估计内核函数。数据样本映射到量子特征空间,可以估计内核条目为量子电路的过渡幅度。我们构建了一个数据集家族,并表明没有经典的学习者可以比随机猜测更好地分类数据,假设离散对数问题的硬度广泛。同时,量子分类器可以实现高精度,并且在有限抽样统计的内核条目中具有鲁棒性。
Over the past few years several quantum machine learning algorithms were proposed that promise quantum speed-ups over their classical counterparts. Most of these learning algorithms either assume quantum access to data -- making it unclear if quantum speed-ups still exist without making these strong assumptions, or are heuristic in nature with no provable advantage over classical algorithms. In this paper, we establish a rigorous quantum speed-up for supervised classification using a general-purpose quantum learning algorithm that only requires classical access to data. Our quantum classifier is a conventional support vector machine that uses a fault-tolerant quantum computer to estimate a kernel function. Data samples are mapped to a quantum feature space and the kernel entries can be estimated as the transition amplitude of a quantum circuit. We construct a family of datasets and show that no classical learner can classify the data inverse-polynomially better than random guessing, assuming the widely-believed hardness of the discrete logarithm problem. Meanwhile, the quantum classifier achieves high accuracy and is robust against additive errors in the kernel entries that arise from finite sampling statistics.