论文标题
在黑洞二元重力波谱之间的当前和未来探测器的敏感性
Sensitivity of present and future detectors across the black-hole binary gravitational wave spectrum
论文作者
论文摘要
众所周知,黑洞至少跨越9个数量级:从激光干涉仪重力引力波动托管天文台科学合作和处女座合作所观察到的恒星质量物体到超级质量的黑洞,例如M87核心的事件地平线望远镜观察到的。不管质量尺度如何,所有这些物体都有望形成二进制物,并最终发出可观察到的引力辐射,并且在较低的重力波频率下会发出更大的物体。我们介绍了Gwent的工具,用于建模整个聚集的黑洞二进制二进制的整个重力波谱的当前和后代重力波探测器的敏感性。我们提供了使用一种新颖的逼真的PTA敏感性曲线生成器,使用适应性模型来代表广泛的探测器设计的敏感性曲线(PTA),以生成脉冲星时正时阵列(PTA)的灵敏度曲线,以及基于空间的干涉仪,并使用地面基于地面的探测器设计,并使用可以重现当前,第二代和第三代设计的现实噪声模型,以及新颖的新型设计。为了模拟来自任何质量尺度的黑洞二进制文件的信号,我们使用现象学波形,能够为具有变化的质量比和旋转的来源建模灵感,合并和循环。使用此适应性的框架,我们产生了与检测器或源相关的任何建模参数的组合的信噪比。通过允许在每个检测器和源参数之间变化,我们可以查明确定特定仪器设计最佳性能的最重要因素。我们的检测器和信号模型的适应性很容易扩展到新的检测器设计和其他引力波信号。
Black-holes are known to span at least 9 orders of magnitude in mass: from the stellar-mass objects observed by the Laser Interferometer Gravitational-Wave Observatory Scientific Collaboration and Virgo Collaboration, to supermassive black-holes like the one observed by the Event Horizon Telescope at the heart of M87. Regardless of the mass scale, all of these objects are expected to form binaries and eventually emit observable gravitational radiation, with more massive objects emitting at ever lower gravitational-wave frequencies. We present the tool, gwent, for modelling the sensitivities of current and future generations of gravitational wave detectors across the entire gravitational-wave spectrum of coalescing black-hole binaries. We provide methods to generate sensitivity curves for pulsar timing arrays (PTAs) using a novel realistic PTA sensitivity curve generator, space-based interferometers using adaptive models that can represent a wide range of proposed detector designs, and ground-based interferometers using realistic noise models that can reproduce current, second, and third generation designs, as well as novel variations of the essential design parameters. To model the signal from black-hole binaries at any mass scale, we use phenomenological waveforms capable of modelling the inspiral, merger, and ringdown for sources with varying mass ratios and spins. Using this adaptable framework, we produce signal-to-noise ratios for the combination of any modelled parameter, associated with either the detector or the source. By allowing variation across each detector and source parameter, we can pinpoint the most important factors to determining the optimal performance for particular instrument designs. The adaptability of our detector and signal models can easily be extended to new detector designs and other models of gravitational wave signals.