论文标题

TrueImage:一种机器学习算法,以提高远程医疗照片的质量

TrueImage: A Machine Learning Algorithm to Improve the Quality of Telehealth Photos

论文作者

Vodrahalli, Kailas, Daneshjou, Roxana, Novoa, Roberto A, Chiou, Albert, Ko, Justin M, Zou, James

论文摘要

远程医疗是医疗保健生态系统中越来越重要的组成部分,尤其是由于19日大流行。远程医疗的迅速采用已暴露在现有基础设施中的限制。在本文中,我们研究并强调照片质量是远程医疗工作流程中的主要挑战。我们专注于远程手学,其中照片质量特别重要。这里提出的框架可以推广到其他健康领域。对于远程医疗,皮肤科医生要求患者提交病变的图像进行评估。但是,由于患者没有临床照片的经验,因此这些图像通常不足以进行临床诊断。临床医生必须手动分类质量较差,并要求提交新的图像,从而浪费了临床医生和患者的时间。我们提出了一个自动化的图像评估机学习管道,TrueImage,以检测质​​量差的皮肤科照片并指导患者拍摄更好的照片。我们的实验表明,尽管培训数据中存在异质性和局限性,但True Imimage可以拒绝50%的低于标准质量的图像,同时保留了80%的高质量图像。这些有希望的结果表明,我们的解决方案是可行的,可以提高远程表现护理的质量。

Telehealth is an increasingly critical component of the health care ecosystem, especially due to the COVID-19 pandemic. Rapid adoption of telehealth has exposed limitations in the existing infrastructure. In this paper, we study and highlight photo quality as a major challenge in the telehealth workflow. We focus on teledermatology, where photo quality is particularly important; the framework proposed here can be generalized to other health domains. For telemedicine, dermatologists request that patients submit images of their lesions for assessment. However, these images are often of insufficient quality to make a clinical diagnosis since patients do not have experience taking clinical photos. A clinician has to manually triage poor quality images and request new images to be submitted, leading to wasted time for both the clinician and the patient. We propose an automated image assessment machine learning pipeline, TrueImage, to detect poor quality dermatology photos and to guide patients in taking better photos. Our experiments indicate that TrueImage can reject 50% of the sub-par quality images, while retaining 80% of good quality images patients send in, despite heterogeneity and limitations in the training data. These promising results suggest that our solution is feasible and can improve the quality of teledermatology care.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源