论文标题
通过多任务表示理论来改善几乎没有的学习
Improving Few-Shot Learning through Multi-task Representation Learning Theory
论文作者
论文摘要
在本文中,我们考虑了多任务表示(MTR)的框架学习的目标是使用源任务来学习降低求解目标任务的样本复杂性的表示形式。我们首先回顾MTR理论的最新进展,并表明它们可以在此框架内进行分析时为流行的元学习算法提供新颖的见解。特别是,我们重点介绍了实践中基于梯度和基于度量的算法之间的基本差异,并提出了理论分析来解释它。最后,我们使用派生的见解通过基于新的光谱正则化项来提高元学习方法的性能,并通过对少量分类基准的实验研究确认其效率。据我们所知,这是将MTR理论的最新学习范围付诸实践的第一个贡献,即几乎没有射击分类。
In this paper, we consider the framework of multi-task representation (MTR) learning where the goal is to use source tasks to learn a representation that reduces the sample complexity of solving a target task. We start by reviewing recent advances in MTR theory and show that they can provide novel insights for popular meta-learning algorithms when analyzed within this framework. In particular, we highlight a fundamental difference between gradient-based and metric-based algorithms in practice and put forward a theoretical analysis to explain it. Finally, we use the derived insights to improve the performance of meta-learning methods via a new spectral-based regularization term and confirm its efficiency through experimental studies on few-shot classification benchmarks. To the best of our knowledge, this is the first contribution that puts the most recent learning bounds of MTR theory into practice for the task of few-shot classification.