论文标题
强大的数据处理常数是通过二进制输入实现的
Strong data processing constant is achieved by binary inputs
论文作者
论文摘要
对于任何通道$ p_ {y | x} $,强数据处理常数定义为[0,1] $中的最小数字$η_{kl} \,以至于$ i(u; y; y; y; y; y; y; yη_{kl} i(u; x)$ cons in Iny Markov Chain $ u-X-y $ unclists $。结果表明,$η_{kl} $的值由$ p_ {y | x} $的最佳二进制输入子渠道给出。任何$ f $ divergence的结果都相同,验证了Cohen,Kemperman和Zbaganu的猜想(1998年)。
For any channel $P_{Y|X}$ the strong data processing constant is defined as the smallest number $η_{KL}\in[0,1]$ such that $I(U;Y)\le η_{KL} I(U;X)$ holds for any Markov chain $U-X-Y$. It is shown that the value of $η_{KL}$ is given by that of the best binary-input subchannel of $P_{Y|X}$. The same result holds for any $f$-divergence, verifying a conjecture of Cohen, Kemperman and Zbaganu (1998).