论文标题

脑MRI中基于无监督区域的异常检测,并用对抗图像插入

Unsupervised Region-based Anomaly Detection in Brain MRI with Adversarial Image Inpainting

论文作者

Nguyen, Bao, Feldman, Adam, Bethapudi, Sarath, Jennings, Andrew, Willcocks, Chris G.

论文摘要

进行医学分割以确定手术前的感兴趣区域(ROI)的界限。通过允许在计划阶段研究ROI的增长,结构和行为,可以获得关键信息,从而增加成功操作的可能性。通常,分割是手动或通过手动注释训练的机器学习方法进行的。相比之下,本文提出了用于T1加权MRI的全自动,无监督的基于介绍的脑肿瘤分割系统。首先,对深度卷积神经网络(DCNN)进行了训练,可以重建缺失健康的大脑区域。然后,通过施用,通过识别最高重建损失的区域来确定异常区域。最后,执行超级像素分割以分割这些区域。我们显示所提出的系统能够分割各种大小和抽象的肿瘤,并分别达到平均和标准偏差骰子得分为0.771和0.176。

Medical segmentation is performed to determine the bounds of regions of interest (ROI) prior to surgery. By allowing the study of growth, structure, and behaviour of the ROI in the planning phase, critical information can be obtained, increasing the likelihood of a successful operation. Usually, segmentations are performed manually or via machine learning methods trained on manual annotations. In contrast, this paper proposes a fully automatic, unsupervised inpainting-based brain tumour segmentation system for T1-weighted MRI. First, a deep convolutional neural network (DCNN) is trained to reconstruct missing healthy brain regions. Then, upon application, anomalous regions are determined by identifying areas of highest reconstruction loss. Finally, superpixel segmentation is performed to segment those regions. We show the proposed system is able to segment various sized and abstract tumours and achieves a mean and standard deviation Dice score of 0.771 and 0.176, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源