论文标题
从上下文或名字学习?关于神经关系提取的实证研究
Learning from Context or Names? An Empirical Study on Neural Relation Extraction
论文作者
论文摘要
神经模型在关系提取(RE)基准方面取得了显着成功。但是,尚无清楚的了解,哪种类型的信息会影响现有的RE模型以做出决策以及如何进一步改善这些模型的性能。为此,我们从经验上研究文本中两个主要信息源的效果:文本上下文和实体提及(名称)。我们发现(i)虽然上下文是支持预测的主要来源,但RE模型也很大程度上依赖于实体提及的信息,其中大多数是类型信息,并且(ii)现有数据集可能会通过实体提及泄漏浅启发式启发式信息,从而有助于对基准测试的高性能。基于分析,我们提出了一个实体掩盖的对比前训练框架,以使对文本上下文和输入信息有更深入的了解,同时避免对实体的死记计记忆或使用表面提示。我们进行了广泛的实验来支持我们的观点,并表明我们的框架可以提高神经模型在不同情况下的有效性和鲁棒性。所有代码和数据集均在https://github.com/thunlp/re-context-ornames上发布。
Neural models have achieved remarkable success on relation extraction (RE) benchmarks. However, there is no clear understanding which type of information affects existing RE models to make decisions and how to further improve the performance of these models. To this end, we empirically study the effect of two main information sources in text: textual context and entity mentions (names). We find that (i) while context is the main source to support the predictions, RE models also heavily rely on the information from entity mentions, most of which is type information, and (ii) existing datasets may leak shallow heuristics via entity mentions and thus contribute to the high performance on RE benchmarks. Based on the analyses, we propose an entity-masked contrastive pre-training framework for RE to gain a deeper understanding on both textual context and type information while avoiding rote memorization of entities or use of superficial cues in mentions. We carry out extensive experiments to support our views, and show that our framework can improve the effectiveness and robustness of neural models in different RE scenarios. All the code and datasets are released at https://github.com/thunlp/RE-Context-or-Names.