论文标题

在车辆网络中进行协作边缘计算的深度加强学习

Deep Reinforcement Learning for Collaborative Edge Computing in Vehicular Networks

论文作者

Li, Mushu, Gao, Jie, Zhao, Lian, Shen, Xuemin

论文摘要

移动边缘计算(MEC)是一项有前途的技术,可支持关键任务的车辆应用,例如智能路径计划和安全应用。在本文中,开发了一个协作边缘计算框架,以减少计算服务延迟并提高车辆网络的服务可靠性。首先,提出了一个任务分区和调度算法(TPSA)来决定工作负载分配,并安排给定计算卸载策略的任务的执行顺序。其次,开发了基于人工智能(AI)的协作计算方法,以确定车辆的任务卸载,计算和结果交付政策。具体而言,卸载和计算问题被称为马尔可夫决策过程。采用了深厚的强化学习技术,即深层确定性政策梯度,以在复杂的城市运输网络中找到最佳解决方案。通过我们的方法,可以通过协作计算中的最佳工作负载分配和服务器选择来最大程度地降低服务成本,其中包括计算服务延迟和服务故障惩罚。仿真结果表明,提出的基于AI的协作计算方法可以适应具有出色性能的高度动态环境。

Mobile edge computing (MEC) is a promising technology to support mission-critical vehicular applications, such as intelligent path planning and safety applications. In this paper, a collaborative edge computing framework is developed to reduce the computing service latency and improve service reliability for vehicular networks. First, a task partition and scheduling algorithm (TPSA) is proposed to decide the workload allocation and schedule the execution order of the tasks offloaded to the edge servers given a computation offloading strategy. Second, an artificial intelligence (AI) based collaborative computing approach is developed to determine the task offloading, computing, and result delivery policy for vehicles. Specifically, the offloading and computing problem is formulated as a Markov decision process. A deep reinforcement learning technique, i.e., deep deterministic policy gradient, is adopted to find the optimal solution in a complex urban transportation network. By our approach, the service cost, which includes computing service latency and service failure penalty, can be minimized via the optimal workload assignment and server selection in collaborative computing. Simulation results show that the proposed AI-based collaborative computing approach can adapt to a highly dynamic environment with outstanding performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源