论文标题

物联网恶意软件网络流量使用视觉表示和深度学习

IoT Malware Network Traffic Classification using Visual Representation and Deep Learning

论文作者

Bendiab, Gueltoum, Shiaeles, Stavros, Alruban, Abdulrahman, Kolokotronis, Nicholas

论文摘要

随着物联网设备和技术的增加,恶意软件的增长是一个充满挑战的威胁,随着感染率和复杂水平的提高。没有强大的安全机制,大量的敏感数据暴露于脆弱性,因此很容易被网络犯罪分子滥用以执行几项非法活动。因此,需要进行实时流量分析和缓解恶意流量的高级网络安全机制。为了应对这一挑战,我们正在建议使用深度学习和视觉表示形式进行新颖的IoT恶意软件流量分析方法,以更快地检测和分类新恶意软件(零日恶意软件)。由于所使用的深度学习技术,发现拟议方法中恶意网络流量的检测在包装级别上有效,从而大大减少了检测时间。为了评估我们所提出的方法性能,构建了一个数据集,该数据集由1000个PCAP文件组成,这些文件的正常和恶意软件流量是从不同的网络流量来源收集的。残留神经网络(RESNET50)的实验结果非常有前途,可用于检测恶意软件流量的精度94.50%。

With the increase of IoT devices and technologies coming into service, Malware has risen as a challenging threat with increased infection rates and levels of sophistication. Without strong security mechanisms, a huge amount of sensitive data is exposed to vulnerabilities, and therefore, easily abused by cybercriminals to perform several illegal activities. Thus, advanced network security mechanisms that are able of performing a real-time traffic analysis and mitigation of malicious traffic are required. To address this challenge, we are proposing a novel IoT malware traffic analysis approach using deep learning and visual representation for faster detection and classification of new malware (zero-day malware). The detection of malicious network traffic in the proposed approach works at the package level, significantly reducing the time of detection with promising results due to the deep learning technologies used. To evaluate our proposed method performance, a dataset is constructed which consists of 1000 pcap files of normal and malware traffic that are collected from different network traffic sources. The experimental results of Residual Neural Network (ResNet50) are very promising, providing a 94.50% accuracy rate for detection of malware traffic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源