论文标题

等级位置预测赛车

Rank Position Forecasting in Car Racing

论文作者

Peng, Bo, Li, Jiayu, Akkas, Selahattin, Wang, Fugang, Araki, Takuya, Yoshiyuki, Ohno, Qiu, Judy

论文摘要

由于存在外源性因素引起的不确定性,因此预测是具有挑战性的。这项工作调查了赛车中的等级位置预测问题,这预测了汽车未来圈的排名。在为等级位置变化的众多因素中,坑停止至关重要,但不规则且罕见。我们发现了现有的方法,包括统计模型,机器学习回归模型以及基于编码器decoder架构的最新预测模型,都在预测中都有局限性。通过对凹坑停止事件的精心分析,我们提出了一个深层模型Ranknet,其原因效应分解是对等级位置序列和坑停止事件进行建模的。它还结合了概率预测,以模拟每个子模型内部的不确定性。通过广泛的实验,Ranknet证明了对基线的强劲绩效提高,例如,MAE始终提高10%以上,并且在适应看不见的新数据时也更加稳定。介绍了模型优化,性能分析的详细信息。它有望为赛车分析提供有用的预测工具,并阐明解决类似挑战性问题的解决方案,总体预测问题。

Forecasting is challenging since uncertainty resulted from exogenous factors exists. This work investigates the rank position forecasting problem in car racing, which predicts the rank positions at the future laps for cars. Among the many factors that bring changes to the rank positions, pit stops are critical but irregular and rare. We found existing methods, including statistical models, machine learning regression models, and state-of-the-art deep forecasting model based on encoder-decoder architecture, all have limitations in the forecasting. By elaborative analysis of pit stops events, we propose a deep model, RankNet, with the cause effects decomposition that modeling the rank position sequence and pit stop events separately. It also incorporates probabilistic forecasting to model the uncertainty inside each sub-model. Through extensive experiments, RankNet demonstrates a strong performance improvement over the baselines, e.g., MAE improves more than 10% consistently, and is also more stable when adapting to unseen new data. Details of model optimization, performance profiling are presented. It is promising to provide useful forecasting tools for the car racing analysis and shine a light on solutions to similar challenging issues in general forecasting problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源