论文标题

IPREGEL:以顶点图形处理处理极端形式的不规则形式的策略

iPregel: Strategies to Deal with an Extreme Form of Irregularity in Vertex-Centric Graph Processing

论文作者

Capelli, Ludovic Anthony Richard, Brown, Nick, Bull, Jonathan Mark

论文摘要

在过去的十年中,以顶点为中心的编程模型在图形处理的世界中引起了极大的关注,从而导致了许多以顶点为中心的框架的出现。它的简单编程接口,从顶点角度表达计算,它既可以易于编程,又为用户的固有框架提供了固定的并行性。但是,以顶点为中心的程序代表了核心和内部内部和内部核心的极端形式。这是因为他们表现出各种各样的挑战,这些挑战从可能在超级巨星(通过细粒度的同步)到内存访问到数量和位置都无法预测的内存访问中大大变化。在本文中,我们探讨了解决这些不规则挑战的三个优化。混合组合制剂小心地将无锁和基于锁的组合耦合,即顶点结构的部分外部化,以改善局部性,并转移到工作负载的边缘中心表示。将优化集成到IPREGEL顶点中心的框架中,从而在三个以顶点社区中常见的三个通用基准进行图形处理中对每个优化进行评估,每个基准都以四个公开图表运行,涵盖了从一百万到十亿个边缘的所有数量级。这项工作的结果是一系列技术,我们认为这些技术不仅可以在以顶点图表处理方面具有显着的性能提高,而且更普遍地适用于不规则的应用程序。

Over the last decade, the vertex-centric programming model has attracted significant attention in the world of graph processing, resulting in the emergence of a number of vertex-centric frameworks. Its simple programming interface, where computation is expressed from a vertex point of view, offers both ease of programming to the user and inherent parallelism for the underlying framework to leverage. However, vertex-centric programs represent an extreme form of irregularity, both inter and intra core. This is because they exhibit a variety of challenges from a workload that may greatly vary across supersteps, through fine-grain synchronisations, to memory accesses that are unpredictable both in terms of quantity and location. In this paper, we explore three optimisations which address these irregular challenges; a hybrid combiner carefully coupling lock-free and lock-based combinations, the partial externalisation of vertex structures to improve locality and the shift to an edge-centric representation of the workload. The optimisations were integrated into the iPregel vertex-centric framework, enabling the evaluation of each optimisation in the context of graph processing across three general purpose benchmarks common in the vertex-centric community, each run on four publicly available graphs covering all orders of magnitude from a million to a billion edges. The result of this work is a set of techniques which we believe not only provide a significant performance improvement in vertex-centric graph processing, but are also applicable more generally to irregular applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源