论文标题
非马克维亚动量计算:通用和高效
Non-Markovian Momentum Computing: Universal and Efficient
论文作者
论文摘要
所有计算都是物理嵌入的。反映这一点,越来越多的结果将速率方程作为热力学计算和生物信息处理的基本力学。但是,严格应用隐含的连续时间马尔可夫链,不包括自然计算的宇宙。我们表明,将工具集扩展到连续的停留马尔可夫链可大大消除约束。通过我们分析两个非常有用的计算,可以用一组速率方程式来确定一般点。我们设计和分析了无热量的无效位翻转,为速率方程建模提供了第一个反例。我们将其推广到无价的弗雷德金门---可逆计算中的关键操作是通用计算的。超越速率方程性动态是可能的,而且如果随机热力学成为物理信息处理范式的一部分,则必须进行。
All computation is physically embedded. Reflecting this, a growing body of results embraces rate equations as the underlying mechanics of thermodynamic computation and biological information processing. Strictly applying the implied continuous-time Markov chains, however, excludes a universe of natural computing. We show that expanding the toolset to continuous-time hidden Markov chains substantially removes the constraints. The general point is made concrete by our analyzing two eminently-useful computations that are impossible to describe with a set of rate equations over the memory states. We design and analyze a thermodynamically-costless bit flip, providing a first counterexample to rate-equation modeling. We generalize this to a costless Fredkin gate---a key operation in reversible computing that is computation universal. Going beyond rate-equation dynamics is not only possible, but necessary if stochastic thermodynamics is to become part of the paradigm for physical information processing.