论文标题
完善trappist-1的过境时序和光度分析:质量,半径,密度,动力学和临时分析
Refining the transit timing and photometric analysis of TRAPPIST-1: Masses, radii, densities, dynamics, and ephemerides
论文作者
论文摘要
四年来,我们已经使用Spitzer空间望远镜收集了Trappist-1系统的运输时间。我们使用完整的一组时间集,将这些基于地面的HST和K2运输时间测量结果添加到对七个星际系统的N体动力学分析,从中我们可以完善行星与恒星的质量比。接下来,我们对Spitzer光曲线进行光学分析,以得出宿主恒星和行星密度的密度。我们发现,所有七个行星的密度都可以用单个岩石质量 - 拉迪乌斯关系来描述,该关系相对于地球耗尽,地球的fe 21 wt%,而在组成中则类似于地球。或者,行星可能具有类似地球的成分,但在光元素(例如地表水层或无核心结构)中增强了地幔中的铁。我们将行星质量的精度测量为3-5%,相当于径向速度(RV)精度为2.5 cm/sec,或比当前RV功能更精确的两个数量级。我们发现行星的偏心很小。轨道极为共蓝;并且该系统在10个MYR时标上是稳定的。我们发现不频繁的时机异常值的证据,我们无法用第八星球解释。相反,我们使用强大的似然函数来解释异常值。我们预测了JWST的定时观察,并推测行星密度对行星系统的形成,迁移和演变的可能影响。
We have collected transit times for the TRAPPIST-1 system with the Spitzer Space Telescope over four years. We add to these ground-based, HST and K2 transit time measurements, and revisit an N-body dynamical analysis of the seven-planet system using our complete set of times from which we refine the mass ratios of the planets to the star. We next carry out a photodynamical analysis of the Spitzer light curves to derive the density of the host star and the planet densities. We find that all seven planets' densities may be described with a single rocky mass-radius relation which is depleted in iron relative to Earth, with Fe 21 wt% versus 32 wt% for Earth, and otherwise Earth-like in composition. Alternatively, the planets may have an Earth-like composition, but enhanced in light elements, such as a surface water layer or a core-free structure with oxidized iron in the mantle. We measure planet masses to a precision of 3-5%, equivalent to a radial-velocity (RV) precision of 2.5 cm/sec, or two orders of magnitude more precise than current RV capabilities. We find the eccentricities of the planets are very small; the orbits are extremely coplanar; and the system is stable on 10 Myr timescales. We find evidence of infrequent timing outliers which we cannot explain with an eighth planet; we instead account for the outliers using a robust likelihood function. We forecast JWST timing observations, and speculate on possible implications of the planet densities for the formation, migration and evolution of the planet system.