论文标题
在真正的双Hurwitz数字的下限
On the lower bounds for real double Hurwitz numbers
论文作者
论文摘要
作为双Hurwitz数字的真正对应物,真正的双Hurwitz数字取决于实际分支点的分布。我们考虑了真实和复杂的双Hurwitz数字渐近生长的问题。我们根据真正的双Hurwitz数字的热带计算,为真正的双Hurwitz数字提供了下限。通过使用此下限和J. Rau的结果(Math。Ann。375(1-2):895-915,2019),我们证明了真实和复杂的Hurwitz数字的对数等效性。
As the real counterpart of double Hurwitz number, the real double Hurwitz number depends on the distribution of real branch points. We consider the problem of asymptotic growth of real and complex double Hurwitz numbers. We provide a lower bound for real double Hurwitz numbers based on the tropical computation of real double Hurwitz numbers. By using this lower bound and J. Rau's result ( Math. Ann. 375(1-2): 895-915, 2019), we prove the logarithmic equivalence of real and complex Hurwitz numbers.