论文标题

一般自适应有理插值,最大秩序接近不连续

General adaptive rational interpolation with maximum order close to discontinuities

论文作者

Arandiga, Francesc, Yanez, Dionisio F.

论文摘要

自适应有理插值已在图像处理的背景下设计为一种新的非线性技术,当我们近似不连续的函数时,它避免了吉布斯现象。在这项工作中,我们对该方法进行了概括,从而为所有算法的所有权重提供明确的表达式。它具有与基本非振荡(WENO)技术相似的行为,但是由于在这种情况下的权重设计更为简单,我们提出了一种新的方式来构造它们,以在不连续性附近获得最大值。进行了一些实验以证明我们的结果并将其与标准方法进行比较。

Adaptive rational interpolation has been designed in the context of image processing as a new nonlinear technique that avoids the Gibbs phenomenon when we approximate a discontinuous function. In this work, we present a generalization to the method giving explicit expressions for all the weights for any order of the algorithm. It has a similar behavior to weighted essentially non oscillatory (WENO) technique, however because of the design of the weights in this case is more simple, we propose a new way to construct them obtaining the maximum order near the discontinuities. Some experiments are performed to demonstrate our results and to compare them with standard methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源