论文标题
在光学遥感图像中用于显着对象检测的平行向上融合网络
A Parallel Down-Up Fusion Network for Salient Object Detection in Optical Remote Sensing Images
论文作者
论文摘要
各种空间分辨率,各种对象类型,尺度和方向以及光学遥感图像(RSIS)中混乱的背景挑战了当前的显着对象检测(SOD)方法。直接采用为自然场景图像(NSIS)设计的SOD方法通常不令人满意。在本文中,我们提出了一个新型的SOD Paralleal向上融合网络(PDF-NET),用于光学RSIS中的SOD,该网络充分利用了path的低水平和高级特征和交叉路径多分辨率特征,以区分多样化的缩放显着物体并抑制杂物背景。具体来说,要保持一个关键的观察,即无论图像的分辨率考虑到什么,PDF-net都会连续进行下采样,以形成五个并行路径,并且可感知到通常存在于光学RSIS中的缩小的显着物体。同时,我们采用密集的连接来利用相同路径上的低水平和高级信息,并建立跨道路的关系,这些信息明确产生了强大的特征表示。最后,我们将多分辨率特征融合在并行路径中,以将功能的好处与不同的分辨率结合在一起,即,高分辨率功能由完整的结构和清晰的细节组成,而低分辨率的特征则突出显示了缩放的明显对象。 ORSSD数据集的广泛实验表明,所提出的网络在定性和定量上都优于最先进的方法。
The diverse spatial resolutions, various object types, scales and orientations, and cluttered backgrounds in optical remote sensing images (RSIs) challenge the current salient object detection (SOD) approaches. It is commonly unsatisfactory to directly employ the SOD approaches designed for nature scene images (NSIs) to RSIs. In this paper, we propose a novel Parallel Down-up Fusion network (PDF-Net) for SOD in optical RSIs, which takes full advantage of the in-path low- and high-level features and cross-path multi-resolution features to distinguish diversely scaled salient objects and suppress the cluttered backgrounds. To be specific, keeping a key observation that the salient objects still are salient no matter the resolutions of images are in mind, the PDF-Net takes successive down-sampling to form five parallel paths and perceive scaled salient objects that are commonly existed in optical RSIs. Meanwhile, we adopt the dense connections to take advantage of both low- and high-level information in the same path and build up the relations of cross paths, which explicitly yield strong feature representations. At last, we fuse the multiple-resolution features in parallel paths to combine the benefits of the features with different resolutions, i.e., the high-resolution feature consisting of complete structure and clear details while the low-resolution features highlighting the scaled salient objects. Extensive experiments on the ORSSD dataset demonstrate that the proposed network is superior to the state-of-the-art approaches both qualitatively and quantitatively.