论文标题

矢量色散冲击波在不连贯的景观上

Vectorial dispersive shock waves on an incoherent landscape

论文作者

Nuño, Javier, Finot, Christophe, Fatome, Julien

论文摘要

我们在数值和实验上研究时间随机性对非线性光纤光学中模拟光爆炸形成的影响。操作原理基于在正常分散光纤中共同传播的部分连贯的探针波与正交极化强烈的短脉冲之间共同传播的两种分量非线性相互作用。交叉偏振相互作用在探针曲线中诱导双相线性,从而导致形成相反速度的两个锋利的前部。然后生成光学爆炸波,并导致一个膨胀的稀疏区域,周围是两个分散冲击波,将冲击正规化到探针景观上。在这里,我们将研究集中在冲击形成中随机性的影响上。特别是,我们表明探针波缺乏连贯性是一个强大的扩散术语,能够阻碍或抑制冲击形成。我们的实验观察结果通过基于两个不连贯耦合的非线性schr {Ö} dinger manakov方程的系统的数值预测来证实。

We study numerically and experimentally the impact of temporal randomness on the formation of analogue optical blast-waves in nonlinear fiber optics. The principle-of-operation is based on a two-components nonlinear interaction occurring between a partially coherent probe wave co-propagating in a normally dispersive optical fiber together with an orthogonally polarized intense short pulse. The cross-polarized interaction induces a dual phase-singularity in the probe profile which leads to the formation of two sharp fronts of opposite velocities. An optical blast-wave is then generated and leads to an expanding rarefication area surrounded by two dispersive shock waves which regularize the shock onto the probe landscape. Here we focus our study on the impact of randomness in the shock formation. In particular, we show that the lack of coherence into the probe wave acts as a strong diffusive term, which is able to hamper or inhibit the shock formation. Our experimental observations are confirmed by numerical predictions based on a system of two incoherently coupled nonlinear Schr{ö}dinger Manakov equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源