论文标题
以艾森斯坦序列的持续术语
On Constant Terms of Eisenstein Series
论文作者
论文摘要
我们计算所有牙的某些希尔伯特模块化艾森斯坦系列的恒定项。我们的公式将这些恒定术语与Hecke $ l $ series的特殊值联系起来。这是基于奥泽瓦(Ozawa)的先前工作,其中研究了艾森斯坦(Eisenstein)系列的限制类别。我们的结果具有直接的算术应用程序 - 在单独的工作中,我们应用了这些公式,以证明Brumer-Stark的猜想远离$ P = 2 $,并为Brumer-Stark单位提供了精确的分析公式。
We calculate the constant terms of certain Hilbert modular Eisenstein series at all cusps. Our formula relates these constant terms to special values of Hecke $L$-series. This builds on previous work of Ozawa, in which a restricted class of Eisenstein series were studied. Our results have direct arithmetic applications---in separate work we apply these formulas to prove the Brumer-Stark conjecture away from $p=2$ and to give an exact analytic formula for Brumer-Stark units.