论文标题
在有限密度QCD中,跨界线的Padé近似值的明显收敛
Apparent convergence of Padé approximants for the crossover line in finite density QCD
论文作者
论文摘要
我们提出了一种新型的贝叶斯方法,以分析可观察到有限密度QCD中的实际bary势$μ_b$。 $μ_b= 0 $的泰勒系数和假想化学势$μ_b^i $的数据在相等的基础上进行处理。我们考虑了Padé近似值的两种不同的构造,即经典的多点PADé近似和混合近似值,这是对Padé近似理论中最新想法的轻微概括。分析中排除了带有伪造杆的近似值。作为应用程序,我们对两个伪造温度的可用连续性外推晶格数据进行了联合分析。观察到$ [p/p] $和$ [p/p+1] $的明显收敛性有理功能序列,增加了$p。$,我们的外推到$μ_b\ \ $μ_b\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ y \ \ y $
We propose a novel Bayesian method to analytically continue observables to real baryochemical potential $μ_B$ in finite density QCD. Taylor coefficients at $μ_B=0$ and data at imaginary chemical potential $μ_B^I$ are treated on equal footing. We consider two different constructions for the Padé approximants, the classical multipoint Padé approximation and a mixed approximation that is a slight generalization of a recent idea in Padé approximation theory. Approximants with spurious poles are excluded from the analysis. As an application, we perform a joint analysis of the available continuum extrapolated lattice data for both pseudocritical temperature $T_c$ at $μ_B^I$ from the Wuppertal-Budapest Collaboration and Taylor coefficients $κ_2$ and $κ_4$ from the HotQCD Collaboration. An apparent convergence of $[p/p]$ and $[p/p+1]$ sequences of rational functions is observed with increasing $p.$ We present our extrapolation up to $μ_B\approx 600$ MeV.