论文标题
Nodesig:通过随机行走扩散的二进制节点嵌入
NodeSig: Binary Node Embeddings via Random Walk Diffusion
论文作者
论文摘要
图形表示学习(GRL)已成为网络分析中的关键范式,并具有大量的跨学科应用程序。随着网络规模的增加,大多数广泛使用的基于学习的图表模型也面临计算挑战。虽然最近有一项努力设计仅处理可扩展性问题的算法,但大多数在下游任务上的准确性方面表现不佳。在本文中,我们旨在研究平衡效率和准确性之间权衡取舍的模型。特别是,我们提出了一个计算二进制节点表示的可扩展模型Nodesig。 Nodesig通过稳定的随机投影利用随机步行扩散概率,以有效地计算锤子空间中的嵌入。我们对各个网络的广泛实验评估表明,与节点分类和链接预测任务的众所周知的基线模型相比,所提出的模型在准确性和效率之间取得了良好的平衡。
Graph Representation Learning (GRL) has become a key paradigm in network analysis, with a plethora of interdisciplinary applications. As the scale of networks increases, most of the widely used learning-based graph representation models also face computational challenges. While there is a recent effort toward designing algorithms that solely deal with scalability issues, most of them behave poorly in terms of accuracy on downstream tasks. In this paper, we aim to study models that balance the trade-off between efficiency and accuracy. In particular, we propose NodeSig, a scalable model that computes binary node representations. NodeSig exploits random walk diffusion probabilities via stable random projections towards efficiently computing embeddings in the Hamming space. Our extensive experimental evaluation on various networks has demonstrated that the proposed model achieves a good balance between accuracy and efficiency compared to well-known baseline models on the node classification and link prediction tasks.