论文标题

深层小组的变异图像登记

Deep Group-wise Variational Diffeomorphic Image Registration

论文作者

van der Ouderaa, Tycho F. A., Išgum, Ivana, Veldhuis, Wouter B., de Vos, Bob D.

论文摘要

深度神经网络越来越多地用于配对图像登记。我们建议扩展基于当前学习的图像注册,以同时注册多个图像。为了实现这一目标,我们基于成对的变分和差异素的方法,并提出了一个一般的数学框架,该框架可以将多个图像注册到其地球平均值和注册,其中任何可用的图像都可以用作固定图像。此外,我们提供了基于归一化互信息的可能性,一个众所周知的图像相似性指标,在多个图像之间,并且先验可以明确控制粘性流体能量,从而有效地将变形正常化。我们使用乳房MRI和胸部4DCT考试在多个时间点获得的乳房MRI和胸部4DCT考试培训和评估了我们的方法。与Elastix和VoxelMorph的比较表明,在图像相似性和参考地标距离方面,该方法的竞争性定量性能明显更快。

Deep neural networks are increasingly used for pair-wise image registration. We propose to extend current learning-based image registration to allow simultaneous registration of multiple images. To achieve this, we build upon the pair-wise variational and diffeomorphic VoxelMorph approach and present a general mathematical framework that enables both registration of multiple images to their geodesic average and registration in which any of the available images can be used as a fixed image. In addition, we provide a likelihood based on normalized mutual information, a well-known image similarity metric in registration, between multiple images, and a prior that allows for explicit control over the viscous fluid energy to effectively regularize deformations. We trained and evaluated our approach using intra-patient registration of breast MRI and Thoracic 4DCT exams acquired over multiple time points. Comparison with Elastix and VoxelMorph demonstrates competitive quantitative performance of the proposed method in terms of image similarity and reference landmark distances at significantly faster registration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源