论文标题

高深度电路在变异本本特征中的普遍有效性

Universal Effectiveness of High-Depth Circuits in Variational Eigenproblems

论文作者

Kim, Joonho, Kim, Jaedeok, Rosa, Dario

论文摘要

我们探讨了量子电路在模拟量子多体汉密尔顿人的基础状态方面的有效性。我们表明,执行相同形式的一系列层单位序列的通用高深度电路可以准确地近似所需的状态。我们通过使用两个具有非常不同属性的汉密尔顿系统来证明他们的普遍成功:横向场Ising模型和Sachdev-ye-Kitaev模型。高深度电路的能量格局具有适当的基于梯度优化的结构,即在任何随机初始点附近的局部极值存在 - 达到地面水平的能量。我们通过最大程度地降低欧几里得距离来进一步测试电路复制随机量子状态的能力。

We explore the effectiveness of variational quantum circuits in simulating the ground states of quantum many-body Hamiltonians. We show that generic high-depth circuits, performing a sequence of layer unitaries of the same form, can accurately approximate the desired states. We demonstrate their universal success by using two Hamiltonian systems with very different properties: the transverse field Ising model and the Sachdev-Ye-Kitaev model. The energy landscape of the high-depth circuits has a proper structure for the gradient-based optimization, i.e. the presence of local extrema -- near any random initial points -- reaching the ground level energy. We further test the circuit's capability of replicating random quantum states by minimizing the Euclidean distance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源