论文标题
ALMA观察和旋转流出源旋转流出的建模I
ALMA observations and modeling of the rotating outflow in Orion Source I
论文作者
论文摘要
我们提出$^{29} $ sio(j = 8--7)$ν$ = 0,sis(j = 19---18)$ν$ = 0,和$^{28} $ sio(j = 8---7)$ν$ = 1分子线档案观测,与Atacama大毫升/siblimeter show(Imbillimeter I.围绕流轴的速度不对称,这些流轴被解释为流出旋转。我们发现旋转速度($ \ sim $ 4--8 km s $^{ - 1} $)随着到磁盘的垂直距离而降低。相反,圆柱半径($ \ sim $ 100--300 au),扩展速度($ \ sim $ 2---15 km s $ s $^{ - 1} $)和轴向速度$ v _ {\ rm z} $($ \ rm z} $($ \ sim $ \ sim $ \ sim $ -1---11 $ -1----11 km s $ s $ s $^laster分子流出$ \ mathrm {m} _ {\ rm froff} \ sim $ 0.66--1.3 m $ $ _ \ odot $估计的质量。给定运动时间$ \ sim $ 130 yr,这意味着质量损失率$ \ dot {\ mathrm {m}} _ {\ rm fuff} \ sim 5.1-10 \ sim 5.1-10 \ times 10^{ - 3} $ m $ _ _ \ odot $ yr $ yr $ yr $ yr $^{ - 1} $。这种大规模的流出设置在磁盘风模型上存在重要的矛盾。我们将观察结果与通过各向异性恒星风与乌尔里希积聚流之间的相互作用产生的壳模型进行比较,该模型与塌陷时旋转的分子包膜相对应。我们发现模型圆柱半径与$^{29} $ SIO(j = 8--7)$ν$ = 0数据一致。模型的膨胀速度和轴向速度相似,除了接近磁盘($ z \ sim \ pm $ 150 au)外,用于扩展速度。然而,模型的旋转速度是一个因子$ \ sim $ 3--10比观察到的值低。我们得出的结论是,单独的乌尔里希流无法解释观察到的旋转,并应探索其他可能性,例如包含磁盘风的角动量。
We present $^{29}$SiO(J=8--7) $ν$=0, SiS (J=19--18) $ν$=0, and $^{28}$SiO (J=8--7) $ν$=1 molecular line archive observations made with the Atacama Large Millimeter/Submillimeter Array (ALMA) of the molecular outflow associated with Orion Source I. The observations show velocity asymmetries about the flow axis which are interpreted as outflow rotation. We find that the rotation velocity ($\sim$4--8 km s$^{-1}$) decreases with the vertical distance to the disk. In contrast, the cylindrical radius ($\sim$100--300 au), the expansion velocity ($\sim$2--15 km s$^{-1}$), and the axial velocity $v_{\rm z}$ ($\sim$-1--10 km s$^{-1}$) increase with the vertical distance. The mass estimated of the molecular outflow $\mathrm{M}_{\rm outflow}\sim$0.66--1.3 M$_\odot$. Given a kinematic time $\sim$130 yr, this implies a mass loss rate $\dot{\mathrm{M}}_{\rm outflow} \sim 5.1-10 \times 10^{-3}$ M$_\odot$ yr$^{-1}$. This massive outflow sets important contraints on disk wind models. We compare the observations with a model of a shell produced by the interaction between an anisotropic stellar wind and an Ulrich accretion flow that corresponds to a rotating molecular envelope in collapse. We find that the model cylindrical radii are consistent with the $^{29}$SiO(J=8--7) $ν$=0 data. The expansion velocities and the axial velocities of the model are similar the observed values, except close to the disk ($z\sim\pm$150 au) for the expansion velocity. Nevertheless, the rotation velocities of the model are a factor $\sim$3--10 lower than the observed values. We conclude that the Ulrich flow alone cannot explain the rotation observed and other possibilities should be explored, like the inclusion of the angular momentum of a disk wind.