论文标题

增强基于辅助编解码器网络的标准兼容图像压缩框架

Enhanced Standard Compatible Image Compression Framework based on Auxiliary Codec Networks

论文作者

Son, Hanbin, Kim, Taeoh, Lee, Hyeongmin, Lee, Sangyoun

论文摘要

为了增强图像压缩性能,最近基于Deep的基于神经网络的研究可以分为三类:可学习的编解码器,后处理网络和紧凑的表示网络。可学习的编解码器已设计用于除传统压缩模块之外的端到端学习。后处理网络使用基于示例的学习提高了解码图像的质量。学会了紧凑的表示网络,以降低输入图像的能力以降低比特率,同时保持解码图像的质量。但是,这些方法与现有的编解码器不兼容,也不是最佳的,以提高编码效率。具体而言,由于对编解码器的考虑不准确,在先前的研究中,很难在先前的研究中实现最佳学习。在本文中,我们提出了一个基于辅助编解码器网络(ACN)的新型标准兼容图像压缩框架。 ACN旨在模仿现有编解码器的图像降解操作,该操作将更准确的梯度传递到紧凑的表示网络。因此,可以有效,最佳地学习紧凑的表示和后处理网络。我们证明,我们提出的基于JPEG和高效视频编码(HEVC)标准的框架以标准兼容的方式大大优于现有图像压缩算法。

To enhance image compression performance, recent deep neural network-based research can be divided into three categories: a learnable codec, a postprocessing network, and a compact representation network. The learnable codec has been designed for an end-to-end learning beyond the conventional compression modules. The postprocessing network increases the quality of decoded images using an example-based learning. The compact representation network is learned to reduce the capacity of an input image to reduce the bitrate while keeping the quality of the decoded image. However, these approaches are not compatible with the existing codecs or not optimal to increase the coding efficiency. Specifically, it is difficult to achieve optimal learning in the previous studies using the compact representation network, due to the inaccurate consideration of the codecs. In this paper, we propose a novel standard compatible image compression framework based on Auxiliary Codec Networks (ACNs). ACNs are designed to imitate image degradation operations of the existing codec, which delivers more accurate gradients to the compact representation network. Therefore, the compact representation and the postprocessing networks can be learned effectively and optimally. We demonstrate that our proposed framework based on JPEG and High Efficiency Video Coding (HEVC) standard substantially outperforms existing image compression algorithms in a standard compatible manner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源