论文标题
零净通量MRI扰动中的磁盘$ - $维持方案和磁性prandtl数字依赖性
Zero net flux MRI-turbulence in disks $-$ sustenance scheme and magnetic Prandtl number dependence
论文作者
论文摘要
我们研究了使用标准的剪切盒模拟的天体物理开普勒磁盘中的磁化不稳定性(MRI)驱动的磁性不稳定性(MRI)驱动的磁性不稳定性(MRI)驱动的湍流,研究了磁性不稳定(MRI)驱动湍流的维持和依赖性。我们专注于傅立叶空间中的湍流动力学,捕获由于磁盘流剪切剪切而引起的非线性过程的特定/非规范各向异性。这是一种新型的非线性重新分布,在傅立叶空间中的波形方向上(非线性横向级联反应)是剪切流的通用性,与通常的直接/逆级联反向。零通量MRI没有指数增长的模式,因此其生长是短暂的或非模式的。湍流自我维护受到MRI和非线性横向级联反应的建设性合作的控制。这种合作发生在小波数(在流量尺寸上),称为傅立叶空间中的重要区域。直接的级联反应将模式能量从重要区域转移到较大的波数。在很大的$ {\ rm pm} $上,横向级联反应超过直接的级联,将大多数模式的能量保留在小波数中。但是,随着$ {\ rm pm} $的减少,横向级联反应的作用减弱了,无法再反对直接级联反应的作用,从而更有效地将能量转移到了更高的波数,从而导致电阻消散增加。这破坏了维持方案,导致湍流衰减。因此,零净通量MRI扰动的衰减随着$ {\ rm pm} $的减少而归因于当直接级联反应在横向级联级别上盛行时,非线性过程的拓扑重排。
We investigate sustenance and dependence on magnetic Prandtl number (${\rm Pm}$) for magnetorotational instability (MRI)-driven turbulence in astrophysical Keplerian disks with zero net magnetic flux using standard shearing box simulations. We focus on the turbulence dynamics in Fourier space, capturing specific/noncanonical anisotropy of nonlinear processes due to disk flow shear. This is a new type of nonlinear redistribution of modes over wavevector orientations in Fourier space -- the nonlinear transverse cascade -- which is generic to shear flows and fundamentally different from usual direct/inverse cascade. The zero flux MRI has no exponentially growing modes, so its growth is transient, or nonmodal. Turbulence self-sustenance is governed by constructive cooperation of the transient growth of MRI and the nonlinear transverse cascade. This cooperation takes place at small wavenumbers (on the flow size scales) referred to as the vital area in Fourier space. The direct cascade transfers mode energy from the vital area to larger wavenumbers. At large ${\rm Pm}$, the transverse cascade prevails over the direct one, keeping most of modes' energy contained in small wavenumbers. With decreasing ${\rm Pm}$, however, the action of the transverse cascade weakens and can no longer oppose the action of direct cascade which more efficiently transfers energy to higher wavenumbers, leading to increased resistive dissipation. This undermines the sustenance scheme, resulting in the turbulence decay. Thus, the decay of zero net flux MRI-turbulence with decreasing ${\rm Pm}$ is attributed to topological rearrangement of the nonlinear processes when the direct cascade begins to prevail over the transverse cascade.