论文标题
使用卷积神经网络对未建模的重力波瞬变进行实时检测
Real-Time Detection of Unmodelled Gravitational-Wave Transients Using Convolutional Neural Networks
论文作者
论文摘要
卷积神经网络(CNN)证明了对来自重力波检测器网络的数据实时分析的潜力,这些数据是从合并的紧凑型二进制文件(如黑洞二进制文件)的特定信号的特定情况。不幸的是,训练这些CNN需要一个目标信号的精确模型。因此,它们不适用于广泛的潜在重力波源,例如核心折叠超新星和长伽马射线爆发,在这些爆发中,未知的物理或计算限制阻止了综合信号模型的发展。我们首次演示具有检测通用信号的CNN(没有精确模型的信号),其跨广泛参数空间具有灵敏度。我们的CNN具有一种新颖的结构,不仅使用网络应变数据,还使用检测器之间的Pearson互相关来区分相关的重力波信号与不相关的噪声瞬变。我们使用第二个Ligo-Virgo观察跑中的数据证明了CNN的功效,并表明它具有与Ligo-Virgo当前使用的“金标准”瞬态搜索相当的敏感性,在极低(1秒)的延迟(为1秒)的延迟(仅允许我们与现有搜索的计算范围)相关联的范围中,实际上可以远离现有搜索的范围,而实际上是在实际范围内进行了实际范围,从而实现了实际范围的范围。伽马射线爆发,核心爆发的超新星和其他相对论的天体物理现象。
Convolutional Neural Networks (CNNs) have demonstrated potential for the real-time analysis of data from gravitational-wave detector networks for the specific case of signals from coalescing compact-object binaries such as black-hole binaries. Unfortunately, training these CNNs requires a precise model of the target signal; they are therefore not applicable to a wide class of potential gravitational-wave sources, such as core-collapse supernovae and long gamma-ray bursts, where unknown physics or computational limitations prevent the development of comprehensive signal models. We demonstrate for the first time a CNN with the ability to detect generic signals -- those without a precise model -- with sensitivity across a wide parameter space. Our CNN has a novel structure that uses not only the network strain data but also the Pearson cross-correlation between detectors to distinguish correlated gravitational-wave signals from uncorrelated noise transients. We demonstrate the efficacy of our CNN using data from the second LIGO-Virgo observing run, and show that it has sensitivity comparable to that of the "gold-standard" transient searches currently used by LIGO-Virgo, at extremely low (order of 1 second) latency and using only a fraction of the computing power required by existing searches, allowing our models the possibility of true real-time detection of gravitational-wave transients associated with gamma-ray bursts, core-collapse supernovae, and other relativistic astrophysical phenomena.