论文标题
Wasserstein分布在鲁棒的逆多物镜优化方面
Wasserstein Distributionally Robust Inverse Multiobjective Optimization
论文作者
论文摘要
逆多物理优化为基于人类专家的一系列观察到的决策,为推断多目标决策问题(DMP)的无监督学习任务提供了一个通用框架。但是,该框架的性能依赖于准确的DMP的可用性,高质量的足够决定以及包含有关DMP足够信息的参数空间。为了对冲假设DMP,数据和参数空间中的不确定性,我们在本文中调查了逆多物原理优化的分布鲁棒方法。具体而言,我们利用Wasserstein指标来构建以这些决定的经验分布为中心的球。然后,我们制定了Wasserstein分布在鲁棒的逆多物镜优化问题(WRO-IMOP),该问题最小化了最差的预期损耗函数,其中最坏的情况是在Wasserstein Ball中的所有分布中采用的。我们表明,WRO-IMOP估计器的过量风险具有亚线性收敛速率。此外,我们提出了WRO-IMOP的半无限重新印象,并开发了一种切削平面算法,该算法将有限迭代的近似解决方案收敛。最后,我们证明了我们方法对合成多目标二次程序和现实世界投资组合优化问题的有效性。
Inverse multiobjective optimization provides a general framework for the unsupervised learning task of inferring parameters of a multiobjective decision making problem (DMP), based on a set of observed decisions from the human expert. However, the performance of this framework relies critically on the availability of an accurate DMP, sufficient decisions of high quality, and a parameter space that contains enough information about the DMP. To hedge against the uncertainties in the hypothetical DMP, the data, and the parameter space, we investigate in this paper the distributionally robust approach for inverse multiobjective optimization. Specifically, we leverage the Wasserstein metric to construct a ball centered at the empirical distribution of these decisions. We then formulate a Wasserstein distributionally robust inverse multiobjective optimization problem (WRO-IMOP) that minimizes a worst-case expected loss function, where the worst case is taken over all distributions in the Wasserstein ball. We show that the excess risk of the WRO-IMOP estimator has a sub-linear convergence rate. Furthermore, we propose the semi-infinite reformulations of the WRO-IMOP and develop a cutting-plane algorithm that converges to an approximate solution in finite iterations. Finally, we demonstrate the effectiveness of our method on both a synthetic multiobjective quadratic program and a real world portfolio optimization problem.