论文标题

研究使用Perdew-Zunger和局部规模的自我交互校正方法的偶极极化和电离能的密度功能预测的自我交互误差的研究

Study of self-interaction errors in density functional predictions of dipole polarizabilities and ionization energies of water clusters using Perdew-Zunger and locally scaled self-interaction corrected methods

论文作者

Akter, Sharmin, Yamamoto, Yoh, Diaz, Carlos M., Jackson, Koblar A., Zope, Rajendra R., Baruah, Tunna

论文摘要

我们研究了自我交流误差(SIE)对以三个越来越复杂的非经验密度函数近似(DFAS)建模的水簇的静态偶极极化的影响。 the local spin density approximation (LDA), the Perdew-Burke-Ernzherof (PBE) generalized-gradient approximation (GGA), and the strongly constrained and appropriately normed (SCAN) meta-GGA, using the Perdew-Zunger self-interaction-correction (PZ-SIC) energy functional in the Fermi-Löwdin orbital SIC (FLO-SIC) framework.我们的结果表明,尽管所有三个DFA都高估了群集极化,但描述从LDA到PBE到扫描有系统地改善。相对于耦合的群集单打和双打(CCSD)值,自我相关扫描的平均绝对误差(MAE)为0.58 bohr $^3 $都非常准确地预测了极化。使用PZ-SIC删除SIE可以正确降低DFA极化,但过度校正,从而导致SIC-LDA,-PBE和-SCAN中低估的极化。最后,我们使用准自一致方案应用了最近提出的局部规模的SIC(LSIC)方法,并将动能密度比作为等轨道指示器。结果表明,LSIC极化能力非常吻合,LSIC-LDA的平均绝对误差为0.08 bohr $^3 $,LSIC-PBE的LSIC-LDA和0.06 BOHR $^3 $,最近CCSD极化能力。同样,LSIC预测的最高占用能量特征值的电离能估计与LSIC-LSIC-LSIC-LSIC和0.04 eV的CCSD(T)电离能量也非常吻合。电离能的LSIC-LDA预测与报道的GW电离能相当,而LSIC-PBE电离能比报道的GW结果更准确。

We studied the effect of self-interaction error (SIE) on the static dipole polarizabilities of water clusters modelled with three increasingly sophisticated, non-empirical density functional approximations (DFAs), viz. the local spin density approximation (LDA), the Perdew-Burke-Ernzherof (PBE) generalized-gradient approximation (GGA), and the strongly constrained and appropriately normed (SCAN) meta-GGA, using the Perdew-Zunger self-interaction-correction (PZ-SIC) energy functional in the Fermi-Löwdin orbital SIC (FLO-SIC) framework. Our results show that while all three DFAs overestimate the cluster polarizabilities, the description systematically improves from LDA to PBE to SCAN. The self-correlation free SCAN predicts polarizabilities quite accurately with a mean absolute error (MAE) of 0.58 Bohr$^3$ with respect to coupled cluster singles and doubles (CCSD) values. Removing SIE using PZ-SIC correctly reduces the DFA polarizabilities, but over-corrects, resulting in underestimated polarizabilities in SIC-LDA, -PBE, and -SCAN. Finally, we applied a recently proposed local-scaling SIC (LSIC) method using a quasi self-consistent scheme and using the kinetic energy density ratio as an iso-orbital indicator. The results show that the LSIC polarizabilities are in excellent agreement with mean absolute error of 0.08 Bohr$^3$ for LSIC-LDA and 0.06 Bohr$^3$ for LSIC-PBE with most recent CCSD polarizabilities. Likewise, the ionization energy estimates as an absolute of highest occupied energy eigenvalue predicted by LSIC are also in excellent agreement with CCSD(T) ionization energies with MAE of 0.4 eV for LSIC-LDA and 0.04 eV for LSIC-PBE. The LSIC-LDA predictions of ionization energies are comparable to the reported GW ionization energies while the LSIC-PBE ionization energies are more accurate than reported GW results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源