论文标题

SU(2)中的循环和分解,II

Loops in SU(2) and Factorization, II

论文作者

Basor, Estelle, Pickrell, Doug

论文摘要

在本文的前传中,我们证明,对于$ su(2,\ mathbb c)$值的循环具有关键的光滑度(在$ l^2 $ sobolev sensic中的衍生物中的一半),以下陈述是等效的:(1)toeplitz and toeplitz and toeplitz operator a toeplitz operatian coptian toeplitz operian with loop a intorian toriand probiriand promiantian toriand in witian no probiriand(2)(2)(2)(2)(2)(2) (3)循环具有独特的根部亚组分解。这取决于某些plancherel风格的公式,以确保Toeplitz运营商的决定因素。该报告的要点是概述了该结果对消失的平均振荡循环的概括,并讨论了一些后果。这种概括取决于Toeplitz运算符的操作者理论分解(不仅是其决定因素)。

In the prequel to this paper, we proved that for a $SU(2,\mathbb C)$ valued loop having the critical degree of smoothness (one half of a derivative in the $L^2$ Sobolev sense), the following statements are equivalent: (1) the Toeplitz and shifted Toeplitz operators associated to the loop are invertible, (2) the loop has a unique triangular factorization, and (3) the loop has a unique root subgroup factorization. This hinges on some Plancherel-esque formulas for determinants of Toeplitz operators. The main point of this report is is to outline a generalization of this result to loops of vanishing mean oscillation, and to discuss some consequences. This generalization hinges on an operator-theoretic factorization of the Toeplitz operators (not simply their determinants).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源