论文标题
时间状态计算机:使用时间内存来针脚基于时间的图形计算
Temporal State Machines: Using temporal memory to stitch time-based graph computations
论文作者
论文摘要
Race Logic是一个到达时间编码的逻辑家族,已证明了从动态编程到机器学习的应用程序的精力和性能改进。但是,算法对硬件的临时映射导致自定义体系结构,因此难以推广。我们通过将种族逻辑与称为热带代数的数学领域相关联,将种族逻辑的发展系统化。热带代数的数学基原始人与广义种族逻辑计算之间的这种关联指导时间编码的热带电路的设计。它也是表达基于高级时正时算法的框架。当与时间内存结合使用时,该抽象可以通过使馈送前进的计算分为阶段并将其组织为状态机器,从而可以对种族逻辑进行系统的概括。我们利用基于模拟的Memristor的时间记忆来设计一种纯粹在定型波前运行的状态机器。我们实施了Dijkstra算法的版本,以评估这款暂时机器。该演示表明了扩大时间计算的表现性,以使其能够提供重要的能量和吞吐量优势。
Race logic, an arrival-time-coded logic family, has demonstrated energy and performance improvements for applications ranging from dynamic programming to machine learning. However, the ad hoc mappings of algorithms into hardware result in custom architectures making them difficult to generalize. We systematize the development of race logic by associating it with the mathematical field called tropical algebra. This association between the mathematical primitives of tropical algebra and generalized race logic computations guides the design of temporally coded tropical circuits. It also serves as a framework for expressing high level timing-based algorithms. This abstraction, when combined with temporal memory, allows for the systematic generalization of race logic by making it possible to partition feed-forward computations into stages and organizing them into a state machine. We leverage analog memristor-based temporal memories to design a such a state machine that operates purely on time-coded wavefronts. We implement a version of Dijkstra's algorithm to evaluate this temporal state machine. This demonstration shows the promise of expanding the expressibility of temporal computing to enable it to deliver significant energy and throughput advantages.