论文标题
$ν= n+1/3 $分数量子厅效应及其实验签名的Anyons的分数和动力
Fractionalisation and dynamics of anyons at $ν=n+1/3$ in fractional quantum Hall effect and their experimental signatures
论文作者
论文摘要
我们显示,填充因子$ν= n+1/3 $的低洼激动与现实的交互完全包含在“ gaffnian quasiholes”的良好定义的希尔伯特空间内。因此,每个Laughlin Quasihole都可以理解为两个Gaffnian Quasiholes的界面,在最低的Landau级别(LLL)中的表现为“ Partons”,其“渐近自由”是由中性激励介导的,用作“ Gluons”。在较高的LLS中,在实验观察到的列型FQH相位附近,Quasiholes具有较弱的界限,并具有丰富的动力学特性。通过研究Quasiholes之间的有效相互作用,我们预测Laughlin Quasiholes的有限温度相变,即使Laughlin基态保持不可压缩,并为其可能的观察得出了相关的实验条件。
We show the low-lying excitations at filling factor $ν=n+1/3$ with realistic interactions are contained completely within the well-defined Hilbert space of "Gaffnian quasiholes". Each Laughlin quasihole can thus be understood as a bound state of two Gaffnian quasiholes, which in the lowest Landau level (LLL) behaves like "partons" with "asymptotic freedom" mediated by neutral excitations acting as "gluons". Near the experimentally observed nematic FQH phase in higher LLs, quasiholes become weakly bounded and fractionalise with rich dynamical properties. By studying the effective interactions between quasiholes, we predict a finite temperature phase transition of the Laughlin quasiholes even when the Laughlin ground state remains incompressible, and derive relevant experimental conditions for its possible observations.