论文标题
开关马尔可夫多项式NARX模型的估计
Estimation of Switched Markov Polynomial NARX models
论文作者
论文摘要
这项工作是针对以非线性自回归外源性(NARX)组件的特征的混合动力系统模型的鉴定,具有有限的多项式多项式扩展以及马尔可夫开关机制。模型参数的估计是在概率框架下通过期望最大化执行的,包括子模型系数,隐藏的状态值和过渡概率。离散模式分类和NARX回归任务在迭代中分离。软标签是通过平均在状态后期上的平均并使用从先前最大化阶段获得的参数化来更新的,将软标签分配给了轨迹的潜在状态。然后,通过通过周期性的坐标下降方法求解加权回归子问题,并以坐标最小化的方式求解加权回归子问题。此外,我们根据L1-NORM桥的估计,然后进行硬质屈光度研究,通过选择多项式扩展,研究了两级选择方案。在三个具有特定回归器的非线性子模型组成的SMNARX问题上证明了所提出的方法。
This work targets the identification of a class of models for hybrid dynamical systems characterized by nonlinear autoregressive exogenous (NARX) components, with finite-dimensional polynomial expansions, and by a Markovian switching mechanism. The estimation of the model parameters is performed under a probabilistic framework via Expectation Maximization, including submodel coefficients, hidden state values and transition probabilities. Discrete mode classification and NARX regression tasks are disentangled within the iterations. Soft-labels are assigned to latent states on the trajectories by averaging over the state posteriors and updated using the parametrization obtained from the previous maximization phase. Then, NARXs parameters are repeatedly fitted by solving weighted regression subproblems through a cyclical coordinate descent approach with coordinate-wise minimization. Moreover, we investigate a two stage selection scheme, based on a l1-norm bridge estimation followed by hard-thresholding, to achieve parsimonious models through selection of the polynomial expansion. The proposed approach is demonstrated on a SMNARX problem composed by three nonlinear sub-models with specific regressors.