论文标题
整形双倾斜浸入
Conformal bi-slant submersions
论文作者
论文摘要
我们研究了从几乎赫尔米尔流形上的共形双倾斜浸入riemannian歧管上,作为共形的抗不变的,共形半不变的,形式半偏见的半偏见,形成性半偏,倾斜和完美的半稀s-稀sersions。我们研究了分布的整合性,并获得了地图具有完全测量纤维的必要条件。我们还研究了此类地图的总大地测量。
We study conformal bi-slant submersions from almost Hermitian manifolds onto Riemannian manifolds as a generalized of conformal anti-invariant, conformal semi-invariant, conformal semi-slant, conformal slant and conformal hemi-slant submersions. We investigated the integrability of distributions and obtain necessary and sufficient conditions for the maps to have totally geodesic fibers. Also we studied the total geodesicity of such maps.