论文标题

关于星系簇的积聚史:时间和空间分布

On the accretion history of galaxy clusters: temporal and spatial distribution

论文作者

Vallés-Pérez, David, Planelles, Susana, Quilis, Vicent

论文摘要

我们分析了Eulerian AMR宇宙学模拟的结果,以量化星系簇的质量生长,探索暗物质和重子之间的差异。我们已经确定了每个质量成分的质量组装历史(MAH),并计算了几个瞬时质量积聚率(MAR)的代理。这两个组件的质量增长显然是由主要合并的贡献所占据的,但是在平滑积聚期间也可能发生高火。我们探索了火星,合并事件和集群环境之间的相关性,发现$ 1 \ leq r/r_ {200m} \ leq 1.5 $中的平均密度与$γ_{200M} $密切相关,以与大量的群集中的$γ_{200M} $相关,这些群集通过他们的MAH经过主要的合并。从对暗物质速度曲线的研究,我们发现Mar Proxies $γ_{200m} $和$α__{200M} $之间的强烈反相关。最后,我们提出了一种新的方法,用于研究模拟中气体吸积流的角度分布分布,该方法允许提取和解释对增生图片的主要贡献,并通过使用多极分析来评估这些贡献的热力学特性之间的系统差异。我们已经在模拟中将该方法初步应用于最佳的数字分辨群集。在最引人注目的结果中,我们发现与各向同性分量相比,通过宇宙丝中的气体系统从系统上较低,但我们没有发现温度明确的区别。

We analyse the results of an Eulerian AMR cosmological simulation in order to quantify the mass growth of galaxy clusters, exploring the differences between dark matter and baryons. We have determined the mass assembly histories (MAHs) of each of the mass components and computed several proxies for the instantaneous mass accretion rate (MAR). The mass growth of both components is clearly dominated by the contribution of major mergers, but high MARs can also occur during smooth accretion periods. We explored the correlations between MARs, merger events and clusters' environments, finding the mean densities in $1 \leq r/R_{200m} \leq 1.5$ to correlate strongly with $Γ_{200m}$ in massive clusters which undergo major mergers through their MAH. From the study of the dark matter velocity profiles, we find a strong anticorrelation between the MAR proxies $Γ_{200m}$ and $α_{200m}$. Last, we present a novel approach to study the angularly-resolved distribution of gas accretion flows in simulations, which allows to extract and interpret the main contributions to the accretion picture and to assess systematic differences between the thermodynamical properties of each of these contributions using multipolar analysis. We have preliminarily applied the method to the best numerically-resolved cluster in our simulation. Amongst the most remarkable results, we find that the gas infalling through the cosmic filaments has systematically lower entropy compared to the isotropic component, but we do not find a clear distinction in temperature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源