论文标题

标量半线性抛物线和双曲线系统的空间控制中采样数据

Sampled-data in Space Control of Scalar Semilinear Parabolic and Hyperbolic Systems

论文作者

Furtat, Igor, Gushchin, Pavel

论文摘要

本文描述了一种在空间(空间变量)控制抛物线和双曲线类型的标量半线性系统中采样数据的新方法,该系统具有未知参数和分布式干扰。可以使用空间变量测量中的一组有限的采样数据。控制定律取决于取决于空间变量和有限状态测量值的函数。此功能的特殊选择会影响闭环系统的某些属性。特别是,本文描述了此功能的示例,该函数与其他控制方法相比提供了降低的控制成本。闭环系统的指数稳定性以及相对于未知参数和干扰的鲁棒性是根据线性基质不等式(LMI)提出的。该模拟证实了理论结果,并显示了与某些现有的对照法相比,提出的对照法的效率。

The paper describes a novel method of sampled-data in space (spatial variable) control of scalar semilinear systems of parabolic and hyperbolic type with unknown parameters and distributed disturbances. A finite set of sampled-data in the spatial variable measurements is available. The control law depends on the function which depends on the spatial variable and on a finite set of state measurements. A special choice of this function can affect on some properties of the closed-loop system. In particular, the paper describes the examples of this function that provides reduced control costs in comparison with some other control methods. The exponential stability of the closed-loop system and robustness with respect to unknown parameters and disturbances is proposed in terms of linear matrix inequalities (LMIs). The simulations confirm theoretical results and show the efficiency of the proposed control law compared with some existing ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源