论文标题
量子和兼容程序的量子拷贝保护在量子随机甲骨文模型中
Quantum copy-protection of compute-and-compare programs in the quantum random oracle model
论文作者
论文摘要
复制保护允许软件分销商以可以在任何输入上进行评估的方式编码程序,但不能“盗版” - 在经典环境中无法实现的概念。 Aaronson(CCC 2009)启动了量子拷贝保护方案的正式研究,并推测量子密码学可以通过量子无关定理为问题提供解决方案。在这项工作中,我们为一类称为“ Compute and Compare程序”的大量回避功能引入了量子复制保护方案 - 对点功能的更有表现的概括。 compute and Compare程序$ \ MATHSF {cc} [f,y] $由功能$ f $和字符串$ y $在其范围内指定:在输入$ x $,$ x $,$ \ mathsf {cc} [f,y] $ upputs $ 1 $ 1 $,如果$ f(x)= y $,和$ 0 $否则。我们证明,我们的方案在量子随机甲骨文模型(QROM)中实现了针对完全恶意对手的非平凡安全性,这使其成为第一个在标准加密模型中享受任何可证明的安全性的复制保护方案。作为互补结果,我们表明,同一方案符合Ananth和La Placa(EPRINT 2020)最近引入的软件保护概念,称为“安全软件租赁”,并在QROM中具有标准的安全性,即确保可忽略的对抗性优势。最后,作为第三个贡献,我们阐明了多位输出点功能的无统治加密与拷贝保护之间的关系。
Copy-protection allows a software distributor to encode a program in such a way that it can be evaluated on any input, yet it cannot be "pirated" - a notion that is impossible to achieve in a classical setting. Aaronson (CCC 2009) initiated the formal study of quantum copy-protection schemes, and speculated that quantum cryptography could offer a solution to the problem thanks to the quantum no-cloning theorem. In this work, we introduce a quantum copy-protection scheme for a large class of evasive functions known as "compute-and-compare programs" - a more expressive generalization of point functions. A compute-and-compare program $\mathsf{CC}[f,y]$ is specified by a function $f$ and a string $y$ within its range: on input $x$, $\mathsf{CC}[f,y]$ outputs $1$, if $f(x) = y$, and $0$ otherwise. We prove that our scheme achieves non-trivial security against fully malicious adversaries in the quantum random oracle model (QROM), which makes it the first copy-protection scheme to enjoy any level of provable security in a standard cryptographic model. As a complementary result, we show that the same scheme fulfils a weaker notion of software protection, called "secure software leasing", introduced very recently by Ananth and La Placa (eprint 2020), with a standard security bound in the QROM, i.e. guaranteeing negligible adversarial advantage. Finally, as a third contribution, we elucidate the relationship between unclonable encryption and copy-protection for multi-bit output point functions.