论文标题

使用基于优化的控制器(扩展版本)的多机器人系统的参数标识

Parameter Identification for Multirobot Systems Using Optimization Based Controllers (Extended Version)

论文作者

Grover, Jaskaran Singh, Liu, Changliu, Sycara, Katia

论文摘要

本文考虑了多机器人系统的参数识别问题。我们希望了解,对抗性观察者何时可以通过简单地观察其位置来逆转工程的工程参数。我们通过使用系统识别的激发持续性的概念来解决这个问题。团队中的每个机器人都使用基于优化的控制器来介导任务满意度和避免碰撞。这些控制器表现出对任务参数的隐式依赖性,该参数构成了为参数识别带来必要条件的障碍,因为这种情况通常需要明确的关系。我们使用双重性理论和主动碰撞避免约束的SVD来解决此瓶颈,并在每个机器人的任务参数与其控制输入之间取得明确的关系。这使我们能够得出成功识别的主要必要条件,这与我们的直觉一致。我们通过使用(a)自适应观察者和(b)在各种几何设置中进行目标估计的无意义的卡尔曼滤波器,通过数值模拟来证明这些条件的重要性。这些模拟表明,在我们条件下应该不可行的情况下,这些估计器都会失败,并且同样在可行的情况下,都收敛到真实参数。这些结果的视频可在https://bit.ly/3kqyj5j上找到。

This paper considers the problem of parameter identification for a multirobot system. We wish to understand when is it feasible for an adversarial observer to reverse-engineer the parameters of tasks being performed by a team of robots by simply observing their positions. We address this question by using the concept of persistency of excitation from system identification. Each robot in the team uses optimization-based controllers for mediating between task satisfaction and collision avoidance. These controllers exhibit an implicit dependence on the task's parameters which poses a hurdle for deriving necessary conditions for parameter identification, since such conditions usually require an explicit relation. We address this bottleneck by using duality theory and SVD of active collision avoidance constraints and derive an explicit relation between each robot's task parameters and its control inputs. This allows us to derive the main necessary conditions for successful identification which agree with our intuition. We demonstrate the importance of these conditions through numerical simulations by using (a) an adaptive observer and (b) an unscented Kalman filter for goal estimation in various geometric settings. These simulations show that under circumstances where parameter inference is supposed to be infeasible per our conditions, both these estimators fail and likewise when it is feasible, both converge to the true parameters. Videos of these results are available at https://bit.ly/3kQYj5J.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源