论文标题

深度验证器:使用深度学习快速分辨率增强层析成像

DeepRegularizer: Rapid Resolution Enhancement of Tomographic Imaging using Deep Learning

论文作者

Ryu, DongHun, Ryu, Dongmin, Baek, YoonSeok, Cho, Hyungjoo, Kim, Geon, Kim, Young Seo, Lee, Yongki, Kim, Yoosik, Ye, Jong Chul, Min, Hyun-Seok, Park, YongKeun

论文摘要

光学衍射断层扫描量表测量了标本的三维折射率图,并以非破坏性方式可视化纳米级的生化现象。光学衍射断层扫描的一个主要缺点是由于对三维光学传递函数的访问有限,轴向分辨率差。通过使用先验信息(例如非负和样品平滑度)的正规化算法解决了这种缺失的锥体问题。但是,这些算法的迭代性质及其参数依赖性使实时可视化不可能。在本文中,我们提出并在实验上证明了一个深层的神经网络,我们将其称为深度规则化器,该网络迅速改善了三维折射率图的分辨率。通过迭代的总变化算法训练了成对的数据集(原始的折射率断层图和分辨率增强的折射索引断层图),基于三维U-NET的卷积神经网络将学习两个质量图域之间的转换。使用细菌细胞和人类白血病细胞系以及通过跨不同样品验证模型,可以证明我们网络的可行性和概括性。与常规迭代方法相比,DEEPREDIBER提供的不仅仅是更快的正则化性能。我们设想提出的数据驱动方法可以绕过其他成像方式中各种图像重建的高时间复杂性。

Optical diffraction tomography measures the three-dimensional refractive index map of a specimen and visualizes biochemical phenomena at the nanoscale in a non-destructive manner. One major drawback of optical diffraction tomography is poor axial resolution due to limited access to the three-dimensional optical transfer function. This missing cone problem has been addressed through regularization algorithms that use a priori information, such as non-negativity and sample smoothness. However, the iterative nature of these algorithms and their parameter dependency make real-time visualization impossible. In this article, we propose and experimentally demonstrate a deep neural network, which we term DeepRegularizer, that rapidly improves the resolution of a three-dimensional refractive index map. Trained with pairs of datasets (a raw refractive index tomogram and a resolution-enhanced refractive index tomogram via the iterative total variation algorithm), the three-dimensional U-net-based convolutional neural network learns a transformation between the two tomogram domains. The feasibility and generalizability of our network are demonstrated using bacterial cells and a human leukaemic cell line, and by validating the model across different samples. DeepRegularizer offers more than an order of magnitude faster regularization performance compared to the conventional iterative method. We envision that the proposed data-driven approach can bypass the high time complexity of various image reconstructions in other imaging modalities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源