论文标题

矩阵组适用于适当的共表型动作的庞加利二元二元性

An equivariant Poincaré duality for proper cocompact actions by matrix groups

论文作者

Guo, Hao, Mathai, Varghese

论文摘要

让$ g $成为一个线性谎言组,在$ g $ -spin $^c $歧管$ m $带有紧凑型商的情况下进行适当的行动和等法。我们表明,PoincaréItility在$ g $ equivariant $ k $ - $ m $的理论之间,使用有限维度$ g $ - v $ - vector-vector-vector捆绑包和$ g $ equivariant $ k $ $ k $ - $ m $的$ m $,通过Baum和Douglas的几何模型定义。

Let $G$ be a linear Lie group acting properly and isometrically on a $G$-spin$^c$ manifold $M$ with compact quotient. We show that Poincaré duality holds between $G$-equivariant $K$-theory of $M$, defined using finite-dimensional $G$-vector bundles, and $G$-equivariant $K$-homology of $M$, defined through the geometric model of Baum and Douglas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源