论文标题
矩阵组适用于适当的共表型动作的庞加利二元二元性
An equivariant Poincaré duality for proper cocompact actions by matrix groups
论文作者
论文摘要
让$ g $成为一个线性谎言组,在$ g $ -spin $^c $歧管$ m $带有紧凑型商的情况下进行适当的行动和等法。我们表明,PoincaréItility在$ g $ equivariant $ k $ - $ m $的理论之间,使用有限维度$ g $ - v $ - vector-vector-vector捆绑包和$ g $ equivariant $ k $ $ k $ - $ m $的$ m $,通过Baum和Douglas的几何模型定义。
Let $G$ be a linear Lie group acting properly and isometrically on a $G$-spin$^c$ manifold $M$ with compact quotient. We show that Poincaré duality holds between $G$-equivariant $K$-theory of $M$, defined using finite-dimensional $G$-vector bundles, and $G$-equivariant $K$-homology of $M$, defined through the geometric model of Baum and Douglas.