论文标题

关于恒定曲率空间中两个颗粒的质量中心的一些评论

Some remarks about the centre of mass of two particles in spaces of constant curvature

论文作者

García-Naranjo, Luis C.

论文摘要

通过回顾Galperin [Comm。。数学。物理。 154(1993),63--84],并将其与其他两个质量中心的定义进行比较,这些定义自然而然地是在恒定曲率空间中对2体问题的处理:首先是最初静止的颗粒碰撞点,其次是稳定旋转溶液的旋转中心。结果表明,如果粒子具有不同的质量,那么这些定义仅在曲率消失并导致一般情况下质量中心的三个不同概念时才等效。

The concept of centre of mass of two particles in 2D spaces of constant Gaussian curvature is discussed by recalling the notion of "relativistic rule of lever" introduced by Galperin [Comm. Math. Phys. 154 (1993), 63--84] and comparing it with two other definitions of centre of mass that arise naturally on the treatment of the 2-body problem in spaces of constant curvature: firstly as the collision point of particles that are initially at rest, and secondly as the centre of rotation of steady rotation solutions. It is shown that if the particles have distinct masses then these definitions are equivalent only if the curvature vanishes and instead lead to three different notions of centre of mass in the general case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源