论文标题
纳米级成像揭示的二维铁磁体中的磁域和域壁固定
Magnetic domains and domain wall pinning in two-dimensional ferromagnets revealed by nanoscale imaging
论文作者
论文摘要
磁性结构和动力学在理解和控制二维磁体的磁性方面起着重要作用,这对基本研究和应用都很感兴趣[1-5]。但是,基于自旋依赖性光通透性[1,2,6]和电导率[7-10]的探针方法既不能提供磁化化的定量信息,也不能实现纳米级的空间分辨率。这些功能对于图像和了解磁性域的丰富特性至关重要。在这里,我们使用钻石探针中氮散布中心的单电子自旋采用低温扫描仪,以明确证明存在磁性域并研究其在原子上薄的CRBR $ _3 $中的动力学。该技术的高空间分辨率可实现磁域的成像,并允许通过缺陷固定的域壁。通过控制磁性域的演化,我们发现固定效果是一种主要的强制性机理,其饱和磁化约为26〜 $μ_b$/nm $^2 $,双层CRBR $ _3 $。通过微磁模拟验证了磁性域结构和固定效应的逆转逆转过程。我们的工作突出显示了扫描氮 - 胶合中心磁力测定法作为探索纳米级二维磁性的定量探针。
Magnetic-domain structure and dynamics play an important role in understanding and controlling the magnetic properties of two-dimensional magnets, which are of interest to both fundamental studies and applications[1-5]. However, the probe methods based on the spin-dependent optical permeability[1,2,6] and electrical conductivity[7-10] can neither provide quantitative information of the magnetization nor achieve nanoscale spatial resolution. These capabilities are essential to image and understand the rich properties of magnetic domains. Here, we employ cryogenic scanning magnetometry using a single-electron spin of a nitrogen-vacancy center in a diamond probe to unambiguously prove the existence of magnetic domains and study their dynamics in atomically thin CrBr$_3$. The high spatial resolution of this technique enables imaging of magnetic domains and allows to resolve domain walls pinned by defects. By controlling the magnetic domain evolution as a function of magnetic field, we find that the pinning effect is a dominant coercivity mechanism with a saturation magnetization of about 26~$μ_B$/nm$^2$ for bilayer CrBr$_3$. The magnetic-domain structure and pinning-effect dominated domain reversal process are verified by micromagnetic simulation. Our work highlights scanning nitrogen-vacancy center magnetometry as a quantitative probe to explore two-dimensional magnetism at the nanoscale.